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(prioseco, sarbach @ifm.umich.mx)

1. Motivation and summary

Our goal is to provide rigorous results regarding the accretion of a relativistic
kinetic gas into a black hole. To this purpose, in this work we start with
the simple case which is based on the following assumptions: (i) collisions
between the gas particles may be neglected, (ii) the self-gravity of the gas is
unimportant, (iii) the black hole is non-rotating. As a consequence of these
assumptions, each gas particle follows a future-directed timelike geodesic in
the Schwarzschild geometry.
In the first part of this work we derive the most general collisionless distribution
function on a Schwarzschild spacetime describing accretion. This is achieved
by exploiting the natural Hamiltonian structure of the cotangent bundle T ∗M
associated with the spacetime manifold and by constructing suitable symplec-
tic coordinates on T ∗M which trivialize the Liouville vector field.
In the second part we assume, in addition, that the gas flow is spherically
symmetric and stationary, and show that these assumptions lead to a one-
particle distribution function which depends only on the mass m, the energy
E and the total angular momentum L of the particle. The value of L plays
an important role in distinguishing those particle that fall into the black hole
from those that are reflected at the centrifugal barrier. As we show, the former
particles contribute to the accretion rate but not to the particle density n∞ at
infinity, while the reflected particles yield a positive n∞ but do not contribute
to the accretion rate.
To provide an explicit example, we consider the steady-state spherical accre-
tion of a simple, collisionless gas which is described by an equilibrium dis-
tribution function at infinity. We compute the particle current density and
the stress-energy tensor as a function of inverse temperature β. In the limit
β → ∞ we reproduce the results in [1] for the accretion rate that were ob-
tained mostly with Newtonian calculations. Furthermore, we also compute
the energy density and radial and tangential pressures prad and ptan at the
horizon. When β → ∞ we show that ptan is much larger than prad, which
provides a partial explanation for the fact that the accretion is much less
intense than in the perfect, polytropic fluid case where ptan = prad.
We use geometrized units where the gravitational constant and speed of light
are set equal to one.

2. Kinetic theory on the cotangent bundle

In the general relativistic description, the one-particle phase space is a suitable
subset of the tangent or cotangent bundle associated with the spacetime man-
ifold M , see for instance [2, 3]. Since this work is based on the Hamiltonian
framework, it is more natural to work on the cotangent bundle, defined as

T ∗M := {(x, p) : x ∈ M, p ∈ T ∗
xM}. (1)

Hence, T ∗M consists of points (x, p), where x ∈ M is a spacetime event
representing the location of the particle and p ∈ T ∗

xM is a co-vector at this
event, representing the canonical momentum of the particle. Therefore, the
phase space should be restricted to those p that are future-directed timelike.
The cotangent bundle T ∗M admits a natural symplectic structure which is
constructed from the Poincaré one-form Θ on T ∗M , given by

Θ(x,p)(X) := p
(

dπ(x,p)(X)
)

, (2)

for a vector field X on T ∗M , where here π : T ∗M → M , (x, p) 7→ x is the
natural projection map and dπ(x,p) : T(x,p)(T

∗M) → TxM its differential at

(x, p). In local coordinates (xµ, pµ), we have

Θ = pµdx
µ, (3)

and thus the symplectic structure is given by the closed, non-degenerated
two-form

Ω := dΘ = dpµ ∧ dxµ (4)

on T ∗M . The symplectic form Ω allows us to assign to any function H on
T ∗M a unique vector field XH on T ∗M , called the associated Hamiltonian
vector field, which is defined by

dH = Ω(·, XH). (5)

In local coordinates (xµ, pµ) one has

XH =
∂H

∂pµ

∂

∂xµ
− ∂H

∂xµ
∂

∂pµ
, (6)

and the integral curves of XH are described by Hamilton’s equations

dxµ

dλ
= +

∂H

∂pµ
(x, p),

dpµ
dλ

= −∂H

∂xµ
(x, p). (7)

For the following, we consider the free-particle Hamiltonian

H(x, p) :=
1

2
g−1
x (p, p) =

1

2
gµν(x)pµpν. (8)

The associated Hamiltonian vector field L := XH is called the Liouville vector
field; its local coordinate expression reads

L = gµν(x)pν
∂

∂xµ
− 1

2
pαpβ

∂gαβ(x)

∂xµ
∂

∂pµ
. (9)

The corresponding integral curves, when projected onto the spacetime mani-
fold (M, g), describe geodesics.

The Liouville (or collisionless Boltzmann) equation, which describes the evo-
lution of a collisionless distribution function f on the cotangent bundle is
simply

L[f ] = 0. (10)

In the following, we derive the most general solution of this equation for the
case where (M, g) is a Schwarzschild black hole. This will be achieved by
introducing new symplectic coordinates on T ∗M which trivialize the Liouville
vector field L.

3. Accretion on a Schwarzschild background

From now on, we consider a Schwarzschild black hole of mass Mb > 0. Since
we are interested in computing observables in the exterior region and on the
horizon, it is convenient to describe the metric in terms of horizon-penetrating
Eddington-Finkelstein coordinates (t, r, ϑ, ϕ), for which

g = −
(

1− 2Mb

r

)

dt2+
4Mb

r
dtdr+

(

1 +
2Mb

r

)

dr2+r2
(

dϑ2 + sin2 ϑ d2ϕ
)

.

This spacetime is stationary and spherically symmetric, hence the following
quantities are conserved along the particle trajectories:

E = −pt (energy), (11)

ℓz = pϕ (azimutal angular momentum), (12)

L =

√

p2ϑ +
ℓ2z

sin2 ϑ
(total angular momentum), (13)

m =
√
−2H (rest mass). (14)

Given E, ℓz, L,m, the canonical momentum of the particle can be recon-
structed from these equations which yield the relation

[

pr

(

1− 2Mb

r

)

− 2Mb

r
E

]2

+ V (r) = E2 (15)

for pr, with the effective potential

V (r) =

(

1− 2Mb

r

)

(

m2 +
L2

r2

)

. (16)

Since we are only interested in particles coming in from the asymptotic region
r → ∞, we restrict ourselves to the energy range m < E < ∞. For each
fixed value of E in this range, the incoming particle either falls into the black
hole, or it is reflected at the potential barrier and returns to the asymptotic re-
gion. Which of the two cases occurs depends on the value of the total angular
momentum L:

* absorbed particles : These particles have total angular momentum L in the
range 0 ≤ L < Lc(E), where Lc(E) corresponds to the value of L for
which the maximum of the effective potential V is equal to E2. In this
case, the sign of the expression inside the square parenthesis in Eq. (15) is
negative, corresponding to a negative radial velocity. As it turns out [4],
these particles do not contribute to the particle density n∞ at infinity.

* reflected particles : These particles have angular momentum lying in the
range Lc(E) < L < Lmax(r), where Lmax(r) is the maximum possible
angular momentum at position r. Since these particles are reflected at the
potential, both signs in Eq. (15) need to be considered. These particles do
contribute to n∞; however they do not contribute to the accretion rate.

The most general collisionless distribution function

Since the motion possess four conserved quantities, the Hamiltonian system
describing geodesic motion on the Schwarzschild spacetime is integrable. Us-
ing the method of Hamilton-Jacobi [5], we find a symplectic transformation
(xµ, pµ) 7→ (Qα, Pα) which trivializes the Liouville vector field L, and in these
new coordinates the Liouville equation (10) is simply

∂

∂Q0
f = 0,

whose general solution is

f (x, p) = F (Q1, Q2, Q3, P0, P1, P2, P3), (17)

for some function F . Here, the new Pα-variables are the conserved quantities
P0 = m2/2, P1 = E, P2 = ℓz, P3 = L, and the relevant Qα-variables are
given by the following integrals:

Q1 = −t +

r
∫

(

E

Npr − 2Mb
r E

+
2Mb

r

)

dr

N
, N := 1− 2Mb

r
, (18)

Q2 = ϕ− ℓz

ϑ
∫

dϑ

pϑ sin
2 ϑ

, (19)

Q3 = −L

r
∫

dr

r2
(

Npr − 2Mb
r E

) + L

ϑ
∫

dϑ

pϑ
. (20)

Note that in general, the quantities Q1, Q2 and Q3 are multivalued since pr
and pϑ are only determined up to a sign. However, in our case, the integrals
over r are well-defined since the projection of the trajectories onto the (r, pr)-
plane are open. In contrast to this, the projection of the trajectories onto
the (ϑ, pϑ)-plane describe closed curves, and one can show that the variables
Q2 and Q3 change by a factor of 2π under a complete revolution about these
curves. Therefore, one needs to require the function F to be 2π-periodic in
the variables Q2 and Q3 for the distribution function f to be well-defined.

4. Observables and spherical steady-state accretion

From now on, we assume that the gas flow is spherically symmetric and sta-
tionary. One can show [4] that this implies that the function F in Eq. (17)
is independent of the Qα’s and P2. Furthermore, we consider a simple gas
consisting of identical particles with positive rest mass m. Consequently,

f (x, p) = Fm(E,L),

with a function Fm which depends on E and L only. In order to focus on a
specific example, we assume the distribution function to represent a relativistic
gas in thermodynamic equilibrium at r → ∞, such that [6]

Fm(E,L) = αe−βE, (21)

with a normalization constant α > 0, and where β = (kBT )
−1 with kB

Boltzmann’s constant and T the temperature of the gas at infinity.

In order to understand the properties of the gas, we compute the particle
current density Jµ and the stress-energy tensor Tµν on M , which in local
coordinates (xµ, pµ) are given by

Jµ =

∫

π−1(x)

f (x, p)pµπx, Tµν =

∫

π−1(x)

f (x, p)pµpνπx, (22)

where πx =
√

− det gµν(x)d4p is the induced volume element on the fibre
π−1(x) = {(x, p) : p ∈ T ∗

xM} over the event x ∈ M . In the following, we
compute these observables in the asymptotic region r → ∞ and at the event
horizon r = 2Mb.
Observables at r → ∞ for arbitrary temperature

In the asymptotic region, the gas behaves as a perfect fluid [6, 7],

Jµ|r→∞ = n∞Uµ, Tµν|r→∞ = (ǫ∞ + p∞)UµUν + p∞gµν,

where the four-velocity is U = Uµ ∂
∂xµ = ∂

∂t, and the particle density n∞,
energy density ε∞ and pressure p∞ are given by

n∞ = 4πm4α
K2(z)

z
, (23)

ε∞ = 4πm5α

[

K1(z)

z
+ 3

K2(z)

z2

]

, p∞ = 4πm5α
K2(z)

z2
, (24)

where

z := mβ =
mc2

kBT
, (25)

and Kn(z) refer to the modified Bessel functions of the second kind.
Observables at r = 2Mb for β → ∞
At the horizon, the particle and energy densities nH and εH and the radial
and tangential pressures prad and ptan are determined by the decomposition
(see Ref. [8] and references therein)

Jµ|r=2Mb
= nHuµ, (26)

Tµ
ν|r=2Mb

= εHe
µ
0e0ν + prade

µ
1e1ν + ptane

µ
2e2ν + ptane

µ
3e3ν, (27)

where uµuµ = −1 and e0, e1, e2, e3 is an orthonormal frame of eigenvectors
of Tµ

ν, e0 being timelike and e1 being radial.
In the limit β → ∞ we obtain

ε

nH
=

mc2

2
√
3

(

3 +

√

31

3

)

≈ 1.79398mc2, (28)

prad
nH

=
mc2

2
√
3

(

−3 +

√

31

3

)

≈ 0.06193mc2, (29)

ptan
nH

=
mc2

4
√
3
≈ 0.1443375mc2. (30)

We note that the tangential pressure is more than twice as large as the radial
one, showing that the collisionless kinetic gas behaves very differently than a
perfect fluid near the horizon. This difference is probably due to the fact that
most gas particles have nonvanishing angular momenta and do not collide.
Finally, we compute the accretion rate µ := 4πJr/n∞ and compression ratio
nH/n∞ of the gas. For large z we find

µ ≈ −16M2
b

√
2πz,

nH
n∞

≈
√

6z

π
. (31)

For the typical situation of gas being accreted by the interstellar medium,
z ≈ 109. These quantities are smaller by a factor of z compared to the cor-
responding quantities in the Michel model [9, 1, 10], describing the spherical
steady-state accretion of a polytropic perfect fluid.

5. Conclusions

We have provided a systematic discussion for the properties of a collisionless,
relativistic kinetic gas which is accreted by a Schwarzschild black hole. In
particular, we have derived the most general collisionless distribution function
describing such a gas. Additionally, we have applied our results to the spheri-
cal steady-state accretion of a gas into a nonrotating black hole, assuming that
the gas is in thermodynamic equilibrium at infinity. For low temperatures, we
recover the results described in [1] and showed that in this case the tangential
pressure is much larger than the radial one and thus diminishes the accretion
process. This provides a partial explanation for the fact that the accretion of a
collisionless gas is much less intense than the accretion of a perfect, polytropic
fluid in the Michel model.
It should be interesting to generalize our study to include collisions, and to
check whether collisions are able to “channel the flow effectively in the radial
direction” [1].
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