

Electromagnetic emission from long-lived binary neutron star merger remnants

Daniel M. Siegel^{1,2}

¹Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany

²Columbia Astrophysics Laboratory (CAL), Columbia University, New York

Siegel D.M. & Ciolfi R. (2015b), arXiv:1508.07911

Siegel D.M. & Ciolfi R. (2015c), arXiv:1508.07939

28th Texas Symposium on Relativistic Astrophysics, Geneva, Dec. 13–18, 2015

Ground-based Gravitational Wave Detector Network

• BNS mergers most promising source of GWs for advanced LIGO/Virgo, routine detections expected in the next years

IFO	Source ^a	$\dot{N}_{\rm low} { m yr}^{-1}$	$\dot{N}_{\rm re}~{ m yr}^{-1}$	$\dot{N}_{\rm high}~{ m yr}^{-1}$
Advanced	NS-NS	0.4	40	400
	NS-BH	0.2	10	300
	BH-BH	0.4	20	1000
	IMRI into IMBH			10 ^b
	IMBH-IMBH			0.1^{d}

Multimessenger astronomy

Abadie et al. 2010

EM counterparts to BNS mergers

Metzger & Berger 2012

- Short gamma-ray bursts (SGRBs)
 - "Standard" afterglows:
 - X-ray
 - UV/optical
 - radio

Berger 2014, Kumar & Zhang 2015

- "Non-standard" X-ray afterglows: (revealed by Swift)
 - Extended Emission
 - X-ray plateaus
 - X-ray flares

Rowlinson+ 2013, Gompertz+ 2013, 2014, Lue+ 2015

- Interaction of dynamical ejecta with ISM (radio)

 Hotokezaka & Piran 2015
- radioactively powered kilonova (macronova)

Li & Paczynski 1998, Rosswog 2005, Metzger+ 2010, Barnes & Kasen 2013, Piran+ 2013, Tanaka & Hotokezaka 2013

Non-standard X-ray afterglows of SGRBs

- Swift revealed that a large fraction of SGRBs are accompanied by long-duration (~10²-10⁵s) and high-luminosity (~10⁴⁶-10⁵¹erg/s) X-ray afterglows
- total energy can be higher than that of the SGRB
- unlikely produced by BH-torus system indicative of ongoing energy injection ("long-lived engine")

challenges BH-torus paradigm for SGRBs

EM counterparts to BNS mergers

Metzger & Berger 2012

- Short gamma-ray bursts (SGRBs)
 - "Standard" afterglows:
 - X-ray
 - UV/optical
 - radio

Berger 2014, Kumar & Zhang 2015

- "Non-standard" X-ray afterglows: (revealed by Swift)
 - Extended Emission
 - X-ray plateaus
 - X-ray flares

Rowlinson+ 2013, Gompertz+ 2013, 2014, Lue+ 2015

- Interaction of dynamical ejecta with ISM (radio)

 Hotokezaka & Piran 2015
- radioactively powered kilonova (macronova)

Li & Paczynski 1998, Rosswog 2005, Metzger+ 2010, Barnes & Kasen 2013, Piran+ 2013, Tanaka & Hotokezaka 2013

What is a promising EM counterpart?

General Phenomenology for BNS mergers leading to a long-lived (>100ms) remnant NS:

Phase I (baryonic wind phase, ~Is):

baryon pollution due to dynamical ejecta, neutrino and magnetically driven winds

Phase II (Pulsar 'ignition' and pulsar wind shock):

once baryon pollution suppressed positronic pulsar wind drives strong shock through ejecta

Phase III (Pulsar wind nebula phase):

swept-up material provides cavity for a pulsar wind nebula (PWN) in analogy to CCSNe

Crab nebula (optical)

- NS can collapse to a BH at any time
- can accommodate standard and time-reversal scenario
- EM emission: reprocessed spin-down energy
 - → model predicts broad-band spectrum from radio to gamma rays

Daniel Siegel (AEI, CAL)

Phase I:
$$\frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} = v_{\mathrm{w}}(R_{\mathrm{ej}}(t), t)$$
$$\frac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} = L_{\mathrm{EM}}(t) + \frac{\mathrm{d}E_{\mathrm{th,NS}}}{\mathrm{d}t} - L_{\mathrm{rad}}(t)$$

Phase II:
$$\frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} = v_{\mathrm{w}}(R_{\mathrm{ej}}(t), t)$$

$$\frac{\mathrm{d}R_{\mathrm{sh}}}{\mathrm{d}t} = v_{\mathrm{sh}}(t)$$

$$\frac{\mathrm{d}R_{\mathrm{n}}}{\mathrm{d}t} = \frac{\mathrm{d}R_{\mathrm{sh}}}{\mathrm{d}t} - \frac{\mathrm{d}\Delta_{\mathrm{sh}}}{\mathrm{d}t}$$

set of coupled ODEs

$$\frac{dt}{dt} = \frac{dt}{dt} \frac{dt}{dt} + \frac{dt}{dt} + \frac{dE_{\text{PWN}}}{dt} - L_{\text{rad,in}}(t)$$

$$\frac{dE_{\text{th,ush}}}{dt} = -\frac{dE_{\text{th,vol}}}{dt} - L_{\text{rad}}(t)$$

$$\frac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} = \frac{\mathrm{d}E_{\mathrm{th,sh}}}{\mathrm{d}t} + \frac{\mathrm{d}E_{\mathrm{th,ush}}}{\mathrm{d}t}$$

$$\frac{\mathrm{d}E_{\mathrm{nth}}}{\mathrm{d}t} = -\frac{E_{\mathrm{nth}}}{R_{\mathrm{n}}}\frac{\mathrm{d}R_{\mathrm{n}}}{\mathrm{d}t} - \frac{\mathrm{d}E_{\mathrm{PWN}}}{\mathrm{d}t} + L_{\mathrm{rad,in}}(t) + \eta_{\mathrm{TS}}[L_{\mathrm{sd}}(t) + L_{\mathrm{rad,pul}}(t)]$$

$$\frac{\mathrm{d}E_B}{\mathrm{d}t} = \eta_{B_n} [L_{\mathrm{sd}}(t) + L_{\mathrm{rad,pul}}(t)]$$

Phase III:

$$\frac{\mathrm{d}v_{\mathrm{ej}}}{\mathrm{d}t} = a_{\mathrm{ej}}(t)$$

$$\frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t} = v_{\mathrm{ej}}(t) + \frac{1}{2}a_{\mathrm{ej}}(t)\mathrm{d}t$$

$$\frac{\mathrm{d}R_{\mathrm{n}}}{\mathrm{d}t} = \frac{\mathrm{d}R_{\mathrm{ej}}}{\mathrm{d}t}$$

$$\frac{\mathrm{d}E_{\mathrm{th}}}{\mathrm{d}t} = [1 - f_{\mathrm{ej}}(t)] \frac{\mathrm{d}E_{\mathrm{PWN}}}{\mathrm{d}t} - L_{\mathrm{rad}}(t) - L_{\mathrm{rad,in}}(t)$$

$$\frac{\mathrm{d}E_{B}}{\mathrm{d}t} = \eta_{B_{\mathrm{n}}}[L_{\mathrm{sd}}(t) + L_{\mathrm{rad,pul}}(t)]$$

BNS merger

ejecta

Pulsar wind nebula:

gas of electrons, positrons, photons complicated radiative interactions, non-thermal photon and particle spectra

- synchrotron cooling and self-absorption
- (inverse) Compton scattering
- pair production and annihilation
- Thomson scattering
- Photon escape

Particle balance equation:

$$0 = Q(\gamma) + P(\gamma) + \dot{N}_{C,syn}(\gamma)$$

Photon balance equation:

$$0 = \dot{n}_0 + \dot{n}_A + \dot{n}_C^{NT} + \dot{n}_C^{T} + \dot{n}_{Syn}^{T} - \frac{c}{R_n} n(\Delta \tau_C^{NT} + \Delta \tau_{\gamma\gamma}) - \dot{n}_{esc}$$

Coupled set of integro-differential equations to be solved at every time step

Siegel & Ciolfi 2015b

Fig.: Reconstructed X-ray afterglow lightcurves (0.3-10 keV) for standard scenario (SGRB at merger)

- delayed onset of strong X-ray radiation ~I-10s after merger (high optical depth at early times)
- bright, isotropic, long-lasting X-ray signal peaking at $\sim 10^2$ 10^4 s after merger (L $\sim 10^{46}$ 10^{48} erg s⁻¹)
 - → smoking gun for BNS merger event → timescale well suited for EM follow up of GW event
 - X-ray signal represents ideal EM counterpart

What is a promising EM counterpart?

 \rightarrow according to the model: non-standard X-ray afterglows represent ideal EM counterpart

In the time-reversal scenario... Ciolfi & Siegel 2015a

 $\sim 10^2 s$

 $L_X \sim 10^{46} - 10^{48} \text{ erg/s}$

2nd plateau:

 $\sim 10^3 - 10^4 \, s$

 $L_X \sim 10^{44} - 10^{46} \text{ erg/s}$

Fig.: Reconstructed X-ray afterglow lightcurves (0.3-10 keV) for time-reversal scenario (SGRB at collapse of NS)

• two-plateau structures, late-time flares

In the time-reversal scenario... Ciolfi & Siegel 2015a

Fig.: Reconstructed X-ray afterglow lightcurves (0.3-10 keV) for time-reversal scenario (SGRB at collapse of NS)

- two-plateau structures, late-time flares
- Luminosity levels and time-scales for two-plateau structures are in agreement with SGRBs showing extended emission and X-ray plateaus
- natural explanation for combined phenomenology of Swift X-ray lightcurves

Conclusions

- Proposed phenomenology and detailed numerical model for a large fraction of BNS mergers
 - general model to compute broad band EM emission (radio to gamma rays) from post-merger system
 - bridges the gap between numerical relativity simulations and the observational timescales of afterglows
 - --- reveals a promising counterpart for GW astronomy
 - combined with time-reversal scenario yields natural explanation for X-ray afterglows of SGRBs in a common phenomenology
 - makes very specific predictions that can be tested observationally

Siegel D.M. & Ciolfi R. (2015b), arXiv:1508.07911

Siegel D.M. & Ciolfi R. (2015c), arXiv:1508.07939

Daniel Siegel (AEI, CAL)