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How much have we learnt 
from the precision era?

• Planck: 25 times better sensitivity and 3 times better resolution than WMAP,  
the previous best experiment

1992

2003
2013 2



We observe so much yet see so little…

• It is a highly non trivial and remarkable and disappointing 
statement that we can explain the statistical property of 107 
CMB pixels with just two primordial numbers relating to the 
perturbations, the amplitude and spectral index (+ background 
parameters)

• Evidence that inflation is simple?  
Not in a Bayesian sense:  E.g. Hardwick & CB `15; Vennin, Koyama & Wands `15
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Anomalies

None of the anomalies are significant enough to rule out the simplest models,  
several are ~ 3 sigma. They include the lack of power on large scales, the cold 
spot, various alignments and the power asymmetry

However, anomalies might provide clues for where to finally find a deviation 
from the simplest models

With large data sets, we are bound to find some anomalies. Quantifying the 
“look elsewhere” effect is difficult and controversial

In particular, anomalies involving large scales are here to stay, they were already 
observed by WMAP and are cosmic variance limited (other than polarisation)

4

Schwarz et al review 2015



Last scattering surface

Earth

P(k)

modes in the box 
contribute to δT/T



Last scattering surface

Earth

P(k)

modes in the box 
contribute to δT/T

P(k)

P(k)

P(k)

P(k)

P(k)

systematically 
larger perturbations

systematically 
smaller perturbations

p̂

n̂

θ

line of sight 
from Earth

direction of 
maximum asymmetry

Pobs(k) = P(k)
(
1 + 2A(k)p̂ · n̂

)

cos ✓amplitude



Last scattering surface

Earth

P(k)

modes in the box 
contribute to δT/T

P(k)

systematically 
larger perturbations

systematically 
smaller perturbations

p̂

n̂

θ

line of sight 
from Earth

direction of 
maximum asymmetry

Pobs(k) = P(k)
(
1 + 2A(k)p̂ · n̂

)

cos ✓amplitude



Last scattering surface

Earth

P(k)

P(k)

Pobs(k) = P(k)
(
1 + 2A(k)p̂ · n̂

)



Last scattering surface

Earth

P(k)

P(k)

Our Hubble volume is embedded within some larger volume

Fluctuation with 
exceptionally 
large amplitude
Erickcek, 
Kamionkowski, 
Carroll 08

Pobs(k) = P(k)
(
1 + 2A(k)p̂ · n̂

)



Last scattering surface

Earth

P(k)

P(k)

Our Hubble volume is embedded within some larger volume

Fluctuation with 
exceptionally 
large amplitude
Erickcek, 
Kamionkowski, 
Carroll 08

Pobs(k) = P(k)
(
1 + 2A(k)p̂ · n̂

)

Power displaced 
compared to average 
in green box



Last scattering surface

Earth
P(k)

Our Hubble volume is embedded within some larger volume

Fluctuation with 
exceptionally 
large amplitude
Erickcek, 
Kamionkowski, 
Carroll 08

Pobs(k) = P(k)
(
1 + 2A(k)p̂ · n̂

)

Power displaced 
compared to average 
in green box



Last scattering surface

Earth

Our Hubble volume is embedded within some larger volume

Pobs(k) = P(k)
(
1 + 2A(k)p̂ · n̂

)



Last scattering surface

Earth

Our Hubble volume is embedded within some larger volume

Pobs(k) = P(k)
(
1 + 2A(k)p̂ · n̂

)

ζ(x1)

ζ(x2)

δσ(x3)



ζ(x1)

ζ(x2)

δσ(x3)



ζ(x1)

ζ(x2)

δσ(x3)

The small-scale fluctuation responds 
to the long wavelength mode only if

⟨δσ(x3)ζ(x1)ζ(x2)⟩ ̸= 0

This entails some non-Gaussianity of roughly local type 
However, the modal coupling is strongly scale    

dependent - Flender & Hotchkiss ’13, Planck ‘15 
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The amplitude of the response depends on how much correlation there is, 
which is roughly proportional to fNL

A(k) ⇠ fNL ⇥ amplitude of long mode
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Aiola et al. 15

The amplitude of the response depends on how much correlation there is, 
which is roughly proportional to fNL

A(k) ⇠ fNL ⇥ amplitude of long mode

fit by power-law
A(k) ⇠ k�0.5 doesn’t depend on kmust scale like

k�0.5

the amplitude for small multipoles is 
something like A = 0.07



Power spectrum asymmetry

10

• To explain it, we need a very large amplitude horizon scale perturbation

• Impossible with an adiabatic mode: Erickcek, Kamionkowski & Carroll ’08 

• This super horizon perturbation requires a large amplitude isocurvature 
perturbation (which single-field inflation cannot generate) - if “real” it is a 
signature of multiple fields

• The asymmetry needs a scale dependence ten times larger than that observed 
for the power spectrum, much larger than in usual slow-roll calculations

• Normally the scale dependence of fNL is calculated for equilateral configurations

• Instead we should calculate the scale dependence due to changing the short-
wavelength mode while keeping the long wavelength fixed



Model building attempt: Take1
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• Consider the simplest case in which in any one field generates all of the 
perturbations

• To preserved the quasi scale invariance of the power spectrum, the only 
possible source of a strong scaling is a large self-interaction

• The log scale dependence for equilateral configurations is (Byrnes et al. `10)

• However for large scale dependences, we need to include the higher-order 
terms, which resum to give a log instead of power law scale dependence

• Even worse, we find a large and scale invariant gNL~105 and a huge quadrupolar 
modulation of the power spectrum, these latter two problems were not 
spotted before despite many papers performing similar model building 
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This is as good as it gets
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Too large gNL and scale invariant B~14, 3 orders-of-magnitude too large 
Problem arises due to strong scale-dependence, ignore “solutions” which ignore this

Byrnes and Tarrant `15



Model building attempt: Take II
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• Give ourselves the additional freedom/complication of more than one field 
generating the perturbations

• The scale-invariant and Gaussian inflaton perturbations can generate the 
power spectrum

• Strongly scale-dependent non-Gaussianity can be generated by a strong 
scaling of the non-Gaussian field in this case, without any self interaction

• This solves the problems of large gNL and B - are we done?

• Instead we need a large eta parameter

• However, this makes the non-Gaussian field roll quickly, it either dominates 
over the inflaton which kills fNL, or we have to start with such a tiny initial 
value that the field is in a quantum diffusion dominated regime and scale 
dependence goes away - eta cannot be a constant

• Byrnes, Regan, Seery & Tarrant ‘15 (see also Kenton & Mulryne `15)

⌘�� ⇠ �0.25 nA ' 2⌘� = �0.5



The horrors of model building
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The growth of fNL with 
time for equilateral and 
squeezed 
configurations. 
For the local template, 
there would be no 
difference

only works for special parameter values and finely tuned initial conditions

The horrors of model building
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The simplest working potential we found



The (power law) scaling in the squeezed limit 
achieves the correct scaling of the asymmetry
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• Previous papers discussed the problem of fNL>100, but without specifying the 
scale dependence and using the (scale invariant) local template 

• Lyth `14, Kanno et al. `14, Kobayashi, Cortes & Liddle `15, etc

• Despite having large fNL on large scales, the Planck response to the 
bispectrum from our model is fNL~1 (for all standard templates)

• In order to get the correct amplitude, we need to tune the amplitude of the 
super-horizon mode in sigma to be about 10-100 times larger than is typical 
(however, see Adhikari, Shandera & Erickcek ’15)

• This is the case with every explanation of this type, but without new physics 
this is a >10 sigma fluctuation to explain a 3 sigma statistical anomaly! 

• We have also checked that the low-l multipoles are not too large
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Anomaly/Asymmetry lessons
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• Theorists are creative, any a posteriori detection is probably hard to explain 
with a sensible model

• Once a model has been built to explain something strange, one must be 
careful to check if it predicts other strange things.   
Normally it will! Ideally this would explain a different anomaly, but often rules 
out the model

• Typical tunings required include the very large amplitude super-horizon 
wavelength mode, the hard work which goes into building the strong scale 
dependence and the initial conditions of the fields. Remember the significance 
of the anomaly you wanted to explain
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Conclusions

• The latest Planck constraints remain broadly consistent with the simplest single 
field models of inflation, but absence of evidence is not evidence of absence

• Anomalies could be the first clue to new physics

• We have calculated in detail how the asymmetry depends on strongly-scale 
dependent non-Gaussianity, which bispectral shapes and scalings matter, and shown 
our complicated bispectrum does not conflict with Planck non-Gaussianity 
constraints

• A successful model must have the correct scaling and amplitude to explain a 10% 
effect, but not generate additional signatures which are ruled out. This is difficult. 
Beware of incomplete calculations

• When you have succeeded, compare the model to the significance of the 
asymmetry you wished to explain



Long-short wavelength coupling
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The superhorizon mode modulates the amplitude of the shorter 
wavelength modes (l<100) 

Smells like local non-Gaussianity
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But with a twist, the short wavelength modes do not feel a coupling 
Strongly scale-dependent “local” non-Gaussianity 
What is the required shape and scale dependence of the bispectrum? 
How does this relate to the response of the power spectrum to the 
long wavelength mode?  
What are the observational constraints? 
Can we build a theoretical model?


