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OVERVIEW

‣ MODELLING THE UNIVERSE
• ΛCDM and beyond
• Effects of Inhomogeneities & observations

‣ NUMERICAL RELATIVITY FOR COSMOLOGY
• Contracting black-hole lattices
• Expanding black-hole lattices
• Dust cosmologies

‣ REQUIREMENTS AND FEASIBILITY



INHOMOGENEOUS COSMOLOGIES
ΛCDM AND BEYOND

Standard model (“ΛCDM”) based on three ingredients:
1. Class of exact solutions: homogeneous and isotropic, Friedmann-

Lemaitre-Robertson-Walker (FLRW);
2. Cosmological perturbation theory around FLRW: large-scale fluctuations;
3. Newtonian methods (such as N-body codes): small scales fluctuations, 

non-perturbative collapse and structure formation.
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• Cosmology is emerging as a full-blown experimental science: data 
precision is rapidly improving.

• We need to assess the systematic errors in the various modelling 
approximations [Ellis & Stoeger 1987].

• Along with better experiments and better data analysis, we will need better 
modelling!
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• Averaging becomes highly non-trivial.
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• Phase transitions in the early universe: Rezzolla, Miller, Pantano (1995), 
Wainwright, Johnson, Peiris, Aguirre, Lehner, Liebling (2014)

• Primordial gravitational waves: Bastero-Gil, Macias-Perez, Santos (2010)
• Large-scale structure: Anninos, Centrella, McKinney, Wilson (1984, 

1985, 1999), Shibata (1999), Bentivegna, Korzynski, Hinder, Bruni 
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Fuzfa (2015)



THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value 
problem, and integrating numerically. One needs to choose a time coordinate and project 
the equations accordingly; reducing the system to first-order form, one is left with twelve 
evolution four constraints equations:

THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value 
problem, and integrating numerically. One needs to choose a time coordinate and project 
the equations accordingly; reducing the system to first-order form, one is left with twelve 
evolution four constraints equations:

THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value 
problem, and integrating numerically. One needs to choose a time coordinate and project 
the equations accordingly; reducing the system to first-order form, one is left with twelve 
evolution four constraints equations:

THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

ta = ↵na + �a �ij = gij + ninj Kij = �Ln�ij



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value 
problem, and integrating numerically. One needs to choose a time coordinate and project 
the equations accordingly; reducing the system to first-order form, one is left with twelve 
evolution four constraints equations:

ta
na

THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

ta = ↵na + �a �ij = gij + ninj Kij = �Ln�ij



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value 
problem, and integrating numerically. One needs to choose a time coordinate and project 
the equations accordingly; reducing the system to first-order form, one is left with twelve 
evolution four constraints equations:

ta
na

THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

ta = ↵na + �a �ij = gij + ninj Kij = �Ln�ij

DjK
j
i �DiK = 8⇡ji

@t�ij = �2↵Kij +Di�j +Dj�i

R+K2 �KijK
ij = 16⇡⇢

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +KkjDi�
k

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +KkjDi�
k



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value 
problem, and integrating numerically. One needs to choose a time coordinate and project 
the equations accordingly; reducing the system to first-order form, one is left with twelve 
evolution four constraints equations:

ta
na

THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

ta = ↵na + �a �ij = gij + ninj Kij = �Ln�ij

DjK
j
i �DiK = 8⇡ji

@t�ij = �2↵Kij +Di�j +Dj�i

R+K2 �KijK
ij = 16⇡⇢

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +KkjDi�
k

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +KkjDi�
k



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value 
problem, and integrating numerically. One needs to choose a time coordinate and project 
the equations accordingly; reducing the system to first-order form, one is left with twelve 
evolution four constraints equations:

ta
na

THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

ta = ↵na + �a �ij = gij + ninj Kij = �Ln�ij

DjK
j
i �DiK = 8⇡ji

@t�ij = �2↵Kij +Di�j +Dj�i

R+K2 �KijK
ij = 16⇡⇢

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +KkjDi�
k

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +KkjDi�
k



Einstein’s equation can be solved exactly by formulating it as an initial-boundary value 
problem, and integrating numerically. One needs to choose a time coordinate and project 
the equations accordingly; reducing the system to first-order form, one is left with twelve 
evolution four constraints equations:

ta
na

THE 3+1 DECOMPOSITION

NUMERICAL RELATIVISTIC COSMOLOGY

ds2 = �↵

2dt2 + �ij(dx
i + �

idt)(dxj + �

jdt)

ta = ↵na + �a �ij = gij + ninj Kij = �Ln�ij

DjK
j
i �DiK = 8⇡ji

@t�ij = �2↵Kij +Di�j +Dj�i

R+K2 �KijK
ij = 16⇡⇢

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +KkjDi�
k

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j +KKij) + �kDkKij +KikDj�

k +KkjDi�
k



STATE OF THE ART

Compact objects are the traditional application area of numerical relativity: they play an 
important observational role, since they drive galactic activity and evolution, are thought 
to be at the core of a class of Gamma Ray Bursts, and are powerful gravitational-wave 
emitters when excited.

Thanks to numerical relativity, a number of these scenarios have been under scrutiny in 
the last ten years, with many more being actively pursued now:

• Black-hole binaries
• Neutron-star binaries
• Mixed binaries
• Gravitational collapse 

and supernovae
• Black holes surrounded 

by accretion disks

The methods and tools of Numerical Relativity can in principle help construct general, 
exact spacetimes, thereby providing a laboratory to study any system at will (but beware 
of assumptions…).

MPI for Gravitational Physics/W.Benger-ZIB
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COMMUNITY SOFTWARE FOR NUMERICAL RELATIVITY

The Einstein Toolkit:
• Open-source toolkit;
• One code-generating 

framework;
• Over one hundred 

components (evolution of 
the gravitational field and 
fluids, analysis of 
spacetimes, I/O);

• AMR capabilities;
• Leveraging HPC systems 

worldwide;
• Tutorials and demos for 

new users — try it out!

NUMERICAL RELATIVISTIC COSMOLOGY
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[Lindquist&Wheeler 1957]

Since LW, several roads:

• Junction conditions [Clifton 2009]
• Series expansions [Bruneton&Larena 2012]
• Solving the constraints [Wheeler 1983, Clifton et al. 2012, Yoo et al. 2012, 

Bentivegna&Korzyński 2012, Yoo et al. 2013, Bentivegna&Korzyński 2013]
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ÃijÃ
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can use the superposition principle to 
construct multi-black-hole solutions.

Two options:
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a conformal metric that is not flat [Wheeler 
1983, Clifton et al. 2012]:

Notes: 
1)Solutions only for positive scalar 

curvature (analogy to the FLRW class);
2)The hamiltonian constraint is linear! One 

can use the superposition principle to 
construct multi-black-hole solutions.

Two options:

• Keep a flat conformal metric, but use a 
non-zero extrinsic curvature [Yoo et al. 
2012]:

Requires:
1)Numerical integration;
2)Extreme care with periodic boundaries.
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ij � 2

3
 6�̃ijD̃jK = 8⇡ 10jj

NUMERICAL RELATIVISTIC COSMOLOGY



Hamiltonian constraint:

Spatial metric given by:

A solution:
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Multiple black holes can be obtained by superimposing this fundamental solution. It is 
convenient to embed this three-sphere in R4, and to express the solution in this 
coordinate space:

The parameters       and the black-hole centers are arbitrary, but if one is interested in 
regular lattices these have to be chosen carefully. In particular, the parameters      have to 
be the same, and the centers have to be equidistant from each other.
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On a three-sphere, there is only a finite number of “regular” arrangements of points, 
corresponding to the regular tessellations of S3. N can be equal to 5, 8, 16, 24, 120, 600.
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• In this case, the conformal-data part of the ID plays a rather decisive 
role in its evolution. Is this always the case?
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Hamiltonian constraint:

It requires numerical integration. If      is not a spatial constant or         is not transverse, the 
momentum constraint has to be solved as well. In all cases, the solution has to include a 
mechanism to preserve the integrability condition.

In this case, the constraint takes the form:

This has to be enforced iteratively since it depends on the unknown conformal factor (and 
potentially on the extrinsic curvature). If this condition is not satisfied, the system does not 
admit solutions (“singular”)! The extent to which one can reduce the equation residual 
depends strongly on how well we can satisfy the compatibility condition.
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A prescription: Yoo et al. (2012) construct an initial-data slice that is asymptotically 
Schwarzschild (in the static slicing) next to the center, and asymptotically CMC (with a 
negative mean curvature) next to the cell faces.
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A prescription: Yoo et al. (2012) construct an initial-data slice that is asymptotically 
Schwarzschild (in the static slicing) next to the center, and asymptotically CMC (with a 
negative mean curvature) next to the cell faces.
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[Yoo et al. 2013,
Bentivegna&Korzyński 2013]
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Same procedure in non-vacuum spacetimes [Anninos 1999, Giblin, Mertens 
& Starkman 2015, Bentivegna&Bruni, 2015]. Advantage: ability to start 
close to the perturbative regime and tune the nonlinear effects.
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ä

a
= �4⇡

3
⇢̄ a(t) = ai

✓
t

ti

◆2/3



Perturbation theory around a homogeneous and 
isotropic background:

In the background:

In the perturbed spacetime:

ds2 = �dt2 + �ijdx
idxj

�ij = a2�ij

ANALYTICAL METHODS

DUST COSMOLOGIES

ä
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CONCLUSIONS

1. Theoretical modelling of relativistic effects in cosmology needs numerical 
methods.

2. A fully 3D, relativistic treatment of simple inhomogeneous cosmologies is 
possible (some results surprising!).

(Existing Numerical-Relativity infrastructure helps, but many algorithms 
are problem-specific and have to be adapted.)

3. Status: non-perturbative effects are small globally, but well beyond 1% 
accuracy at the local level.


