## JOINT CONSTRAINTS ON NEUTRINO MASS AND N<sub>eff</sub> FROM COSMOLOGY

## **Graziano Rossi**

Department of Physics and Astronomy Sejong University – Seoul, South Korea

with C. Yèche, N. Palanque-Delabrouille, J. Lesgourgues

Texas Symposium - Geneva, Switzerland, December 15, 2015









G. Rossi

SCIENCE CASE
DATASETS
SIMULATIONS
RESULTS

# 3 MESSAGES

## Joint constraints on $N_{ m eff}$ and $\sum m_{ u}$

- $N_{
  m eff}=$  2.91 $^{+0.21}_{-0.22}$  and  $\sum m_{
  u}<$  0.15 eV (all at 95% CL) ightarrow CMB + Lyman-lpha
- $N_{
  m eff}=2.88^{+0.20}_{-0.20}$  and  $\sum m_{
  u}<0.14$  eV (all at 95% CL) ightarrow CMB + Lyman-lpha + BAO
- Novel suite of hydrodynamical simulations with massive neutrinos + innovative technique to handle dark radiation models
- Sterile neutrino thermalized with active neutrinos ruled out at more than  $5\sigma \rightarrow$  one of the strongest bounds to date
- $N_{
  m eff}=0$  rejected at more than 14 $\sigma o$  robust evidence for the CNB from  $N_{
  m eff}\sim3$

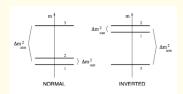
SCIENCE CASE
DATASETS
SIMULATIONS
RESULTS

## **OUTLINE**

- Why? Neutrino Science
- How? Tools & Technique
- What? Results



SCIENCE CASE
DATASETS
SIMULATIONS
RESULTS


#### **MAIN REFERENCES**

- G. Rossi et al. (2015), PRD, 92, 063505
- G. Rossi et al. (2014), A&A, 567, A79



## WHY?

- Total neutrino mass?
- Neutrino mass hierarchy?
- Number of effective neutrino species?



 Neutrino mass scale and hierarchy important for Standard Model → leptogenesis, baryogenesis, right-handed neutrino sector + several cosmological implications DATASETS
SIMULATIONS
RESULTS

## $How \rightarrow Datasets$



• One-dimensional Ly $\alpha$  forest flux power spectrum derived from the Data Release 9 (DR9) of the Baryon Acoustic Spectroscopic Survey (BOSS) guasar data

- Planck (2013) temperature data from the March 2013 public release (both high and low-\ell)
- High-\ell public likelihoods from the Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT)
- Some low-ℓ WMAP polarization data
- Baryon Acoustic Oscillation (BAO) scale in the clustering of galaxies from the BOSS Data Release 11 (DR11)

SCIENCE CASE

DATASETS

SIMULATIONS



## How → SIMULATIONS

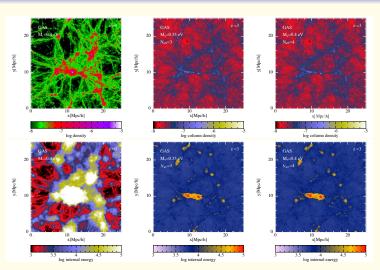
### A suite of 48 hydrodynamical simulations with massive neutrinos

- Typical set (3 sims.)  $\rightarrow$  (a) 100  $h^{-1}$ Mpc/768<sup>3</sup>, (b) 25  $h^{-1}$ Mpc/768<sup>3</sup>, (c) 25  $h^{-1}$ Mpc/192<sup>3</sup>
- With splicing technique → equivalent of 100 h<sup>-1</sup>Mpc/3072<sup>3</sup>
- Full snapshots at a given redshift (z = 4.6 2.2,  $\Delta z = 0.2$ )
- 100,000 guasar sightlines per redshift interval per simulation

#### Group I

| Simulation Set  | $M_{ u}$ [eV] |
|-----------------|---------------|
| BG a/b/c        | 0             |
| NUBG a/b/c      | 0.01          |
| NU01 a/b/c      | 0.1           |
| NU01-norm a/b/c | 0.1           |
| NU02 a/b/c      | 0.2           |
| NU03 a/b/c      | 0.3           |
| NU04 a/b/c      | 0.4           |
| NU04-norm a/b/c | 0.4           |
| NU08 a/b/c      | 0.8           |
| NU08-norm a/b/c | 0.8           |

#### Group II

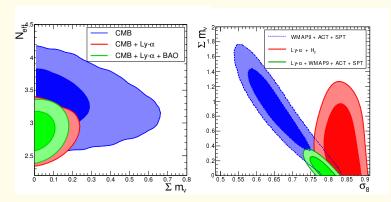

| Simulation Set                    | $M_{\nu}$ [eV] |
|-----------------------------------|----------------|
| γ+NU08 a/b/c                      | 0.8            |
| H <sub>0</sub> +NU08 a/b/c        | 0.8            |
| n <sub>s</sub> +NU08 a/b/c        | 8.0            |
| $\Omega_{\rm m}+{\rm NU08~a/b/c}$ | 0.8            |
| $\sigma_8$ +NU08 a/b/c            | 0.8            |
| T <sub>0</sub> +NU08 a/b/c        | 0.8            |

- Group I → Best-guess and neutrino runs
- Group II → Cross-terms

# SCIENCE CASE DATASETS

**SIMULATIONS** 

## **VISUALIZATIONS**




Rossi (2014), Rossi et al. (2014, 2015)

SCIENCE CASE DATASETS

SIMULATIONS

## What→ Joint Constraints



Rossi et al. (2015), Palanque-Delabrouille et al. (2015)

SCIENCE CASE
DATASETS
SIMULATIONS

# 3 MESSAGES

# Joint constraints on $\sum m_{ u}$ and $N_{ m eff}$

- $N_{
  m eff}=$  2.91 $^{+0.21}_{-0.22}$  and  $\sum m_{
  u}<$  0.15 eV (all at 95% CL) ightarrow CMB + Lyman-lpha
- $N_{
  m eff}=2.88^{+0.20}_{-0.20}$  and  $\sum m_{
  u}<0.14$  eV (all at 95% CL) ightarrow CMB + Lyman-lpha + BAO
- Novel suite of hydrodynamical simulations with massive neutrinos + innovative technique to handle dark radiation models
- Sterile neutrino thermalized with active neutrinos ruled out at more than  $5\sigma \to \text{one}$  of the strongest bounds to date
- $N_{
  m eff}=0$  rejected at more than  $14\sigma 
  ightarrow$  robust evidence for the CNB from  $N_{
  m eff}\sim 3$

SCIENCE CASE
DATASETS
SIMULATIONS