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GWs FROM SMBH BINARIES

➤ Supermassive black holes 
(M > 106 M⨀) live at the 
centers of most galaxies. 

➤ When galaxies merge, 
SMBHs may form binaries. 

➤ If binaries become close 
enough (≪1 pc) they will 
decay over millions of years 
by gravitational wave 
emission. 

➤ Signal should be detectable 
by pulsar timing arrays.

NGC 6240: a merger remnant with SMBHs ~1 kpc apart.  
Credit: 



PULSAR TIMING ARRAYS

➤ Use precise timing of 
millisecond pulsars across the 
sky to measure gravitational 
waves passing the Earth. 

➤ Sensitive to frequencies of 
order 1 to 100 nHz—times of 
years to decades. 

➤ Primary expected signal:  
stochastic, isotropic 
background due to binary 
SMBHs at z ≲ 2. 

➤ Stringent upper limits 
starting to rule out models

Artist’s conception of a PTA.  
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Table 2
Summary model parameters and prior ranges.

Parameter Description Prior Comments
White Noise

Ek EFAC per backend/receiver system uniform in [0,10] Only used in single pulsar analysis
Qk EQUAD per backend/receiver system uniform in logarithm [-8.5,-5] Only used in single pulsar analysis
Jk ECORR per backend/receiver system uniform in logarithm [-8.5,-5] Only used in single pulsar analysis
Red Noise

Ared Red noise power law amplitude uniform in [10-20,10-11] 1 parameter per pulsar
�red Red noise power law spectral index uniform in [0,7] 1 parameter per pulsar
GWB

Agw GWB power law amplitude uniform in [10-18,10-11] 1 parameter for PTA for power-law models
�gw GWB power law spectral index delta function Fixed to different values depending on analysis
⇢i GWB power spectrum coefficients at frequency i/T uniform in ⇢

1/2
i [10-18,10-8]a 1 parameter per frequency

A GWB broken power-law amplitude log-normalb for models A(B)
N (-14.4(-15),0.26(0.22)) 1 parameter for PTA for broken power law models

 GWB broken power-law low-frequency spectral index uniform in [0,7] 1 parameter for PTA for broken power law models
fbend GWB broken power-law bend frequency uniform in logarithm [-9,-7]c 1 parameter for PTA for broken power law models

a The prior uniform in ⇢
1/2
i is chosen to be consistent with a uniform prior in Agw for the power law model since 'i / A2

gw.

b These values are quoted in log base 10 and are obtained from MOP14 and S13.
c We choose different prior values on fbend when mapping to astrophysical model parameters as described in Section 5.
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Figure 2. Strain amplitude vs. GW frequency. The solid black and long
dashed black lines are the 95% upper limits from our spectral and power-law
analyses. The red, blue and green shaded regions are the one-sigma predic-
tions from the models of S13, RWS14, and MOP14. The green shaded region
uses the simulation results from MOP14, but replaces the fit to the GWB pre-
dictions used in that paper with the functional form given by Eq. (24).

than the recent EPTA upper limit of LTM15, and a factor of
5 more constraining than the 5 year data release upper limit
when applying the same Bayesian analysis. Furthermore, we
find a slightly less constraining upper limit when using the
free spectrum model (power-law equivalent upper limit of
2 ⇥ 10-15). This is to be expected since the free spectrum
model has many more degrees of freedom (we use 50 free
amplitudes for each of the 50 frequencies in this case) over
the power law parameterization (1 degree of freedom). Thus,
since the power law model can leverage extra information at
all frequencies, as opposed to the spectrum model where each
frequency is independent of the others, more constraining up-
per limits are expected from a power law model. We also find
that the upper limit on the strain spectrum from the spectrum
analysis is consistent with white noise (i.e., hwhite

c ( f )/ f 3/2) at

frequencies & 3/T , where T is the length of the longest set of
residuals in the data set, which indicates that our GWB upper
limits are coming from the three lowest frequency bins. This
behavior is to be expected since we have several well timed
pulsars that do not span the full 9-year baseline (see Table 1)
and thus will have peak sensitivity at frequencies greater than
1/T .

From inspection of Figure 2 we see that our 95% upper limit
is within at least the 2-sigma confidence region of all three as-
trophysical models and is sensitive to a potential turnover in
the spectrum due to environmental coupling factors. We wish
to determine the level of consistency between our data and
the power-law models displayed in Figure 2. To accomplish
this we follow the method applied in Shannon et al. (2013).
Given that we have a model M for the value of the GW ampli-
tude Agw whose probability distribution function is denoted
p(Agw|M) and that we have a probability distribution func-
tion for Agw given the data, denoted p(Agw|d), where d repre-
sents the data, the probability that we measure a value of Âgw
greater than that predicted by the model, AM

gw, is given by the
law of total probablility

P(Âgw > AM
gw) =

Z 1

-1
p(Agw|M)dAgw

Z 1

Agw

p(A0
gw|d)dA0

gw.

(21)
Therefore, low values of P(Âgw > AM

gw) indicate that the range
of Agw that is consistent with our data is inconsistent with
the model M, and vice versa. To carry out this procedure
the distribution p(Agw|d) is simply the marginalized poste-
rior distribution when using the uniform prior on Agw. We
use log-normal distributions to model the MOP14, S13, and
RWS14, models. Since the models of RWS14, and S13 pre-
dict nearly the same GWB amplitude distribution (assuming
a power-law only) we make no distinction between these two
models. Furthermore, the model distributions on Agw, given
by log-normal distributions have mean and standard devia-
tions of (-14.4,-15) and (0.26,0.22) for the MOP14 (here-
after model A) and S13/RWS14 (hereafter model B) mod-

THE nHz STOCHASTIC GRAVITATIONAL WAVE BACKGROUND

➤ Incoherent sum over large 
number of sources 

➤ Almost no evolution on 
human timescales 

➤ Canonical form: isotropic, 
power law spectrum 

➤ Important unknowns: 
• Formation rate of SMBH 

binaries (sets amplitude) 

• Environmental coupling 
(could change shape)

Arzoumanian et al. 2015



A NUMERICAL CALCULATION

➤ Signal is from high redshift, 
massive sources, so we need 
large number statistics 

➤ Use large dark matter 
simulations:  
• Multidark, Dark Sky 

• Box size: (1 Gpc/h)3  

• Cosmology: WMAP5, Planck 

➤ Complementary to 
Millenium Simulation, 
empirical calculations

A z=0 snapshot of Multidark.  



FROM HALOS TO GALAXIES

➤ From the dark matter 
simulations, we get halo 
merger trees: 
• List of dark matter halos with 

mass at snapshots in time 

• Halo evolutionary history 

➤ We use stellar mass-halo 
mass scaling relations to 
assign galaxies of a given 
stellar mass to halos 

➤ Assign galaxies to be either 
star-forming or quiescent



FROM HALOS TO GALAXIES

➤ From the dark matter 
simulations, we get halo 
merger trees: 
• List of dark matter halos with 

mass at snapshots in time 

• Halo evolutionary history 

➤ We use stellar mass-halo 
mass scaling relations to 
assign galaxies of a given 
stellar mass to halos 

➤ Assign galaxies to be either 
star-forming or quiescent

The Astrophysical Journal, 770:57 (36pp), 2013 June 10 Behroozi, Wechsler, & Conroy
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Figure 7. Left panel: evolution of the derived stellar mass as a function of halo mass. In each case, the lines show the mean values for central galaxies. These relations
also characterize the satellite galaxy population if the horizontal axis is interpreted as the halo mass at the time of accretion. Error bars include both systematic and
statistical uncertainties, calculated for a fixed cosmological model (see Section 4 for details). Right panel: evolution of the derived stellar mass fractions (M∗/Mh) as
a function of halo mass.
(A color version of this figure is available in the online journal.)

The rate of decrease depends again on the halo mass, with high
halo masses shutting off more rapidly than lower halo masses.
Cluster-scale (Mh ! 1014 M⊙) halos form most of their stars
rapidly, at early times, whereas galaxies in Magellanic Cloud-
scale halos (1011 M⊙) form stars over an extended period of
time (see also Section 5.4).

5.2. The Stellar Mass–Halo Mass Relation

We show constraints on SMHM relation from z = 0 to z = 8
in the left panel of Figure 7 and on the SMHM ratio in the right
panel. As seen in our previous work (Behroozi et al. 2010), there
is a strong peak in the stellar mass to halo mass ratio at around
1012 M⊙ to at least z ∼ 4 and a weaker peak still visible to
z ∼ 8. While the location of the peak appears to move to higher
masses with increasing redshift (consistent with Leauthaud et al.
2012), the abundance of massive halos is also falling off with
increasing redshift.

In terms of dwarf galaxies (Mh ∼ 1010 M⊙), we only have
constraints from observations at z = 0. These have been the
subject of recent interest due to the finding of higher-than-
expected stellar mass to halo mass ratios in dwarf galaxies
around the Milky Way (Boylan-Kolchin et al. 2012). However,
these expectations have been set largely by the assumption
that the stellar mass to halo mass ratio remains a scale-free
power law below 1011 M⊙. As seen in Figure 7, the low mass
power-law behavior is broken below 1011 M⊙, corresponding
with an upturn in the SMF below 108.5 M⊙ (Baldry et al. 2008;
this result has also been seen by A. Kravtsov, in preparation).
This underscores the danger of assuming that faint dwarfs obey
the same physical scaling relations as Magellanic-Cloud-scale
galaxies; moreover, it also is a strong argument against fitting
the SMHM relation with a double power law (see discussion in
Appendix D).

Concerning the range of allowed SMHM relations, the
observational systematics are large enough that our results
are marginally consistent with an unchanging SMHM relation
from z = 6 to z = 0. Nonetheless, the feature with strongest
significance is a gradual decrease in stellar mass in the median
1011 M⊙ halo from z = 0 to z = 2, followed by an increase again
for redshifts z > 6; also potentially indicated is an increase in
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Figure 8. Evolution of the derived stellar mass fractions (M∗(z)/Mh(z)) as a
function of halo mass at the present day. More massive halos used to have
a significantly larger fraction of mass in stars, but the peak star formation
efficiency has remained relatively constant to the present day.
(A color version of this figure is available in the online journal.)

stellar mass in the median Mh > 1013 M⊙ halo from z = 0 to
z = 2. The best-fit SMHM relations at z = 7 and z = 8 are
significantly different than at lower redshifts, with more stellar
mass per unit halo mass. However, concerns about the reliability
of the SMFs at those redshifts (see Section 3.1) urge caution in
interpreting the physical meaning of this result.

A useful perspective on these results can be obtained by
considering the historical stellar mass to halo mass ratio of halos,
as shown in Figure 8. Despite the large systematic uncertainties,
it is clear that halos go through markedly different phases of
star formation. This evolution is most apparent for massive
halos, as observations have been able to probe the properties
of the progenitor galaxies all the way to z = 8. Specifically,
high-redshift progenitors of today’s brightest cluster galaxies
(Mh ∼ 1014 M⊙ were relatively efficient in converting baryons
to stars—comparable to the most efficient galaxies today.
However, between redshifts 2–3, their efficiencies peaked, and
thereafter they began to form stars less rapidly than their host
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FROM HALOS TO GALAXIES

➤ From the dark matter 
simulations, we get halo 
merger trees: 
• List of dark matter halos with 

mass at snapshots in time 

• Halo evolutionary history 

➤ We use stellar mass-halo 
mass scaling relations to 
assign galaxies of a given 
stellar mass  

➤ Assign galaxies to be either 
star-forming or quiescent

The Astrophysical Journal, 767:50 (34pp), 2013 April 10 Moustakas et al.

Figure 11. Evolution of the SMFs of (left) star-forming and (right) quiescent galaxies from z = 0–1 based on the data presented in Figure 10. We use progressively
lighter shades of blue to show the evolution of the star-forming galaxy SMF, and shades of orange to show how the SMF of quiescent galaxies has evolved. The black
shaded region in each panel shows the corresponding SDSS-GALEX SMF.
(A color version of this figure is available in the online journal.)

Figure 12. Evolution in the number density of all (black squares), quiescent (red diamonds), and star-forming (blue points) galaxies in four 0.5 dex wide intervals
of stellar mass ranging from 109.5–1010 M⊙ in the upper-left panel, to 1011–1011.5 M⊙ in the lower-right panel. The error bar on each measurement is due to the
quadrature sum of the Poisson and sample variance uncertainties in each redshift interval; we denote lower limits on the number density using upward-pointing arrows.
The solid black, dot-dashed red, and dashed blue lines show weighted linear least-squares fits to the data, and the corresponding shaded regions show the 1σ range of
power-law fits drawn from the full covariance matrix. We find a factor of ∼2–3 increase in the number density of ∼109.5–1010.5 M⊙ quiescent galaxies since z ≈ 0.5,
and a remarkably little change (−8% ± 10%) in the space density of star-forming galaxies over the same range of stellar mass and redshift. Between 1010.5–1011 M⊙,
the space density of quiescent galaxies increases by 58% ± 9%, while the number density of star-forming galaxies declines by −13% ± 23%. Meanwhile, above
1011 M⊙ we find a steep 54% ± 7% decline in the number of massive star-forming galaxies since z ≈ 1, and a small increase (22% ± 12%) in the space density of
comparably massive quiescent galaxies. The distinct evolutionary trends exhibited by star-forming and quiescent galaxies conspire to keep the number density of all
galaxies relatively constant over the range of stellar masses and redshifts probed by PRIMUS.
(A color version of this figure is available in the online journal.)

we find that the number density of 109.5–1010 M⊙ quiescent
galaxies increases significantly toward lower redshift, by a factor
of 3.2 ± 0.5 since z = 0.4, whereas the number density of
star-forming galaxies decreases marginally, by −10% ± 15%
over the same redshift range. Meanwhile, the number density
of 1010–1010.5 M⊙ quiescent galaxies increases by a factor of
2.2 ± 0.4 since z = 0.6, while the number of comparably
massive star-forming galaxies changes by −4%±15%. Finally,

in the 1010.5–1011 M⊙ stellar masses bin we find a 58% ± 9%
increase in the space density of quiescent galaxies since z =
0.8, and a −13% ± 23% decrease in the number of star-
forming galaxies over the same redshift range. Thus, we find
remarkably little change (−8% ± 10%) in the number density
of 109.5–1010.5 M⊙ star-forming galaxies over the full range
of redshifts where PRIMUS is complete, and a gradual, but
significant buildup in the population of quiescent galaxies

20
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FROM GALAXIES TO BHS

➤ Calculate galaxy bulge 
mass according to stellar 
mass, population type 

➤ Use BH-bulge mass scaling 
relations to populate 
galaxies with black holes 

➤ Assume binaries form 
when the host halos merge 

➤ Final result: distribution of 
binary black holes formed 
in each redshift interval

The Astrophysical Journal, 788:11 (15pp), 2014 June 10 Lang et al.

Figure 1. Sérsic index and B/T ratio as a function of the total stellar mass of our galaxy sample spanning the redshift range 0.5 < z < 2.5. The whole sample (black
non-filled symbols) is divided in star-forming (blue symbols) and quiescent galaxies (red symbols). The respective shaded areas mark the 50th percentile scatter of
the distributions within one bin, while the error bars indicate the uncertainty on the median value. Results for the lower and upper halves of the redshift interval are
marked with dotted and dashed lines, respectively. The bins contain (from left to right) 1439, 1091, 886, 693, 484, 259, 114, and 35 star-forming systems, and 227,
267, 298, 369, 280, 214, 83, and 25 quiescent systems within the whole redshift range. SFGs show a clear trend of increasing Sérsic index and B/T with increasing
stellar mass, reaching B/T ∼ 0.4–0.5 above 1011 M⊙ and reflecting the build-up of central mass concentrations in main-sequence SFG up to z ∼ 2.5.
(A color version of this figure is available in the online journal.)

alternatively, by growing the extent of the disk with respect to
that of the bulge without any change to B/T .

The right-hand panel of Figure 1 explores the B/T ratio as a
function of galaxy mass, for SFGs and QGs separately. Again,
we find a clear anti-correlation between star-formation activity
and bulge prominence. Focusing on the star-forming population,
the median B/T is limited to below 30% for intermediate
mass SFGs (10 < log(M) < 11), while typical bulge mass
fractions rise to 40%–50% above 1011 M⊙. We note that there
is a significant scatter in the distribution of individual B/T
values around the median for both quiescent and SFGs. We
investigated the variation in median trends when varying the
binning intervals, finding negligible changes at lower masses,
while the median B/T of the most massive (log(M) ∼ 11.3)
SFG bin changes by ±0.1, depending on the applied binning
intervals.19

We note that measurements on the H band yield bulge mass
fractions among SFGs that are lower by ∼30% (on average),
as can be understood from a disk component composed of a
younger, lower M/L stellar population than the bulge.

From the two-component fits, we infer a typical Re,B/Re,D

size ratio of ∼0.2, albeit with significant scatter (see Figure 6).
The median size ratio shows little dependence on star-formation
activity or mass, over the range probed by our sample. Given
the enhanced B/T values in QGs, and the fact that bulges
have smaller half-mass radii than disks, one might wonder if
the difference in total size between SFGs and QGs can be
completely accounted for by a redistribution of stellar material
from the disk to the bulge, without changing the extent of each
of the components individually. Our analysis confirms that the

19 The binning scheme applied in Figure 1 is such that the most massive bin
still contains more than 10 galaxies, allowing a robust estimation of the
median.

change in the B/T of SFGs prior to or during quenching is,
to a large extent, responsible for the size difference between
the quiescent and star-forming population. However, some
fraction of the shrinking size is still attributed to the individual
components being smaller. In Figure 2, we show the total sizes as
well as the sizes of the individual components for star-forming
and QGs, as measured on the mass maps. While the total sizes
of SFGs and QGs are noticeably different (by a factor ∼3 at
log(M∗) ∼ 10.5), the difference in the size of the bulge and
the disk components between SFGs and QGs, respectively, is
smaller, typically by a factor ∼1.5.

4.3. Fraction of Quenched Galaxies

With the morphological parameters of the mass maps for our
entire galaxy sample in hand, we now proceed to relate those
with galaxy-integrated star formation properties.

The three panels of Figure 3 show, from left to right, the
fraction fquench of quenched galaxies as a function of total
stellar mass, bulge mass, and disk mass, respectively. Here,
we again define galaxies as quenched/quiescent when sSFR <
1/3 ∗ tHubble(z), and as star-forming otherwise.

The uncertainties in fquench are derived via a bootstrapping
method and represent the 68% confidence levels. They include
sample variance and the typical measurement errors on B/T ,
which are derived as described in Section 3.2. For the boot-
strapping, we computed fquench for 1000 samples, which are
randomly drawn from the original sample, with replacement.
For each bootstrap iteration, we displace the B/T values for
each galaxy by the typical measurement error in B/T , given the
galaxy’s magnitude, size, and measured profile shape.

The top left panel of Figure 3 illustrates that the fraction of
quenched galaxies increases with increasing mass, from ∼0.1 at
around 1010 M⊙ to ∼0.5 at 2 × 1011 M⊙. A second conclusion

6
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FROM GALAXIES TO BHS

➤ Calculate galaxy bulge 
mass according to stellar 
mass, population type 

➤ Use BH-bulge mass scaling 
relations to populate 
galaxies with black holes 

➤ Assume binaries form 
when the host halos merge 

➤ Final result: distribution of 
binary black holes 
formed in each redshift 
interval

58

To better emphasize the slight variation in M•/Mbulge, we plot this ratio expressed as a percent
against bulge mass in Figure 18. A direct fit to these points gives

100

(

M•

Mbulge

)

=

(

0.49+0.06
−0.05

) (

Mbulge

1011 M⊙

)0.14±0.08

, intrinsic scatter = 0.29 dex. (11)

BH mass ratios range from 0.1% to ∼ 1.8%, with NGC 4486B and NGC 1277 standing out at 14%
and 17%, respectively. The systematic variation in M•/Mbulge with Mbulge is one reason why AGN
feedback has little effect on galaxy structure at low BH masses and instead becomes important at
the largest BH masses (Section 8). Note: the RMS scatter ∆ logM• = 0.327 in Figure 18 (top) is
only marginally smaller than ∆ logM• = 0.341 in the luminosity correlation (Figures 16 and 17).
Conversion from LK,bulge to Mbulge does not make much difference for old stellar populations.

Figure 18
(top) BH mass and (bottom) percent ratio of BH mass to bulge mass as functions of bulge mass. The
lines are Equations 10 and 11. The scatter in M•/Mbulge is larger than the systematic variation.

Kormendy & Ho 2013



CALCULATING THE GWB

➤ Previous steps give us a 
probability distribution of 
binaries in mass, redshift 

➤ Use Monte Carlo selection 
to simulate population of 
observed sources for many 
realizations of the universe 

➤ Assume: 
• Keplerian circular binaries,  

• no environmental effects,  

• no stallingz
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REALIZATION-TO-REALIZATION VARIANCE IN THE SPECTRUM

Individual sources
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REALIZATION-TO-REALIZATION VARIANCE IN THE SPECTRUM

Linearly binned spectrum
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REALIZATION-TO-REALIZATION VARIANCE IN THE SPECTRUM

Multiple realizations
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REALIZATION-TO-REALIZATION VARIANCE IN THE SPECTRUM

Median
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REALIZATION-TO-REALIZATION VARIANCE IN THE SPECTRUM
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REALIZATION-TO-REALIZATION VARIANCE IN THE SPECTRUM

Canonical power law: 
rms amplitude
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AMPLITUDE OF THE GWB

➤ Ensemble averaging gives 
the canonical power law 
spectrum (A1yr ≈ 6x10-16) 

➤ Varying astrophysical 
models gives a factor of 2 
uncertainty in the 
amplitude 

➤ Range is constrained by 
recent PTA upper limits
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‘COSMIC’ VARIANCE VS ASTROPHYSICAL UNCERTAINTY

Cosmic variance: 
Poisson noise in the 
binary formation rate

Uncertainty in 
scaling relations: 
Overall binary 
formation rate
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CONCLUSIONS

➤ Used large dark matter simulations to make numerical 
predictions for the stochastic gravitational wave background 

➤ Amplitude similar to recent empirical approaches, range 
constrained by PTA upper limits 

➤ Two important forms of variance in the spectrum: 
• Astrophysical uncertainty: in scaling relations merger rates, etc; 

produces systematic offset in the amplitude, frequency independent 

• ‘Cosmic variance’: result of Poisson noise in SMBHB mass function, 
frequency dependent—dominates at high frequencies 

➤ Relation between this cosmic variance and anisotropy? 

➤ Effect of the cosmic variance on spectra with a turnover?


