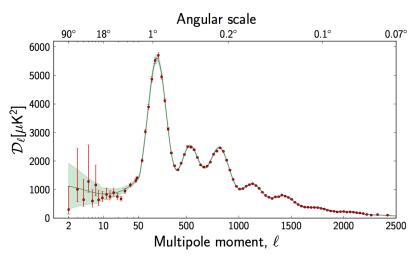


Where are the baryons?

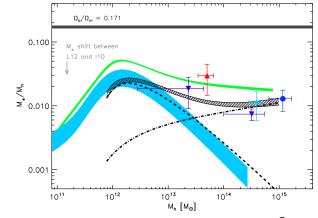
Dominique Eckert


Department of Astronomy, University of Geneva

Main collaborators:

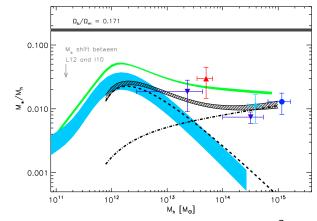
S. Ettori, J. Coupon, M. Pierre, F. Pacaud, A. Le Brun, I. McCarthy (XXL); M. Jauzac, J.-P. Kneib, H.Y. Shan, R. Massey, C. Tchernin (A2744)

December 17, 2015


The cosmic baryon fraction

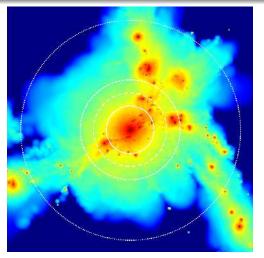
Planck 2015 release: $\Omega_b/\Omega_m = 0.156 \pm 0.003$; 2% uncertainty!

Where are the Universe's baryons?


Star formation in the Universe is inefficient

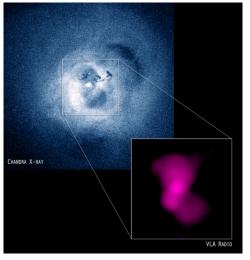
Coupon et al. 2015

Where are the Universe's baryons?


Star formation in the Universe is inefficient

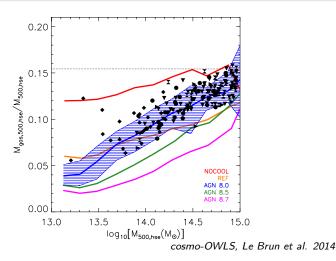
Coupon et al. 2015

At all mass scales the stellar fraction only represents a small fraction (< 20%) of the cosmic baryon fraction


Hot gas in massive halos

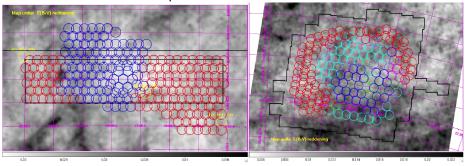
Roncarelli et al. 2006

Most of the baryons are in the hot intracluster medium and shine in X-rays

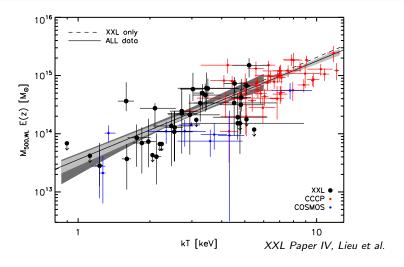

AGN feedback in massive halos

Perseus cluster, Fabian et al. 2000

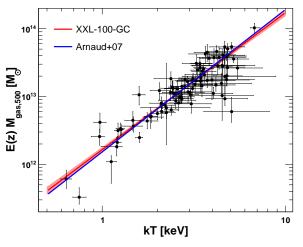
Feedback from the central AGN reheats the surrounding medium


Adding baryonic physics and AGN feedback

Cooling transforms some of the baryons into stars AGN feedback makes the gaseous atmosphere expand


The XMM-XXL survey

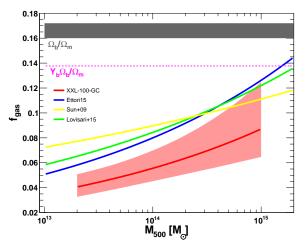
XXL (PI: M. Pierre) covers an area of 50 square degrees with uniform 10 ks XMM exposure


- Survey sensitivity: 5×10^{-15} ergs cm⁻² s⁻¹ (0.5-2.0 keV band)
- Observations completed in December 2013

Weak lensing mass - X-ray temperature relation

 $M_{\rm WL}-T_X$ using 38 CFHTLenS systems. Low scatter $\sigma_{\rm int}\sim 20-30\%$

$M_{\rm gas}-T$ relation

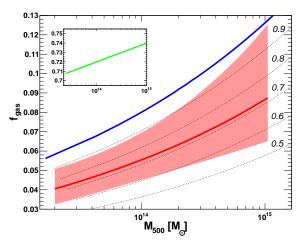


XXL Paper XIII, Eckert et al.

 $M_{\rm gas}$ correlates very well with temperature

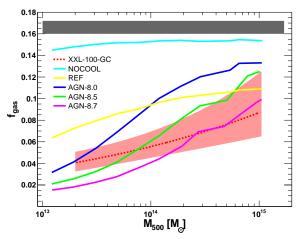
Gas fraction

We get $f_{\rm gas}$ by combining $M_{
m WL}-T$ and $M_{
m gas}-T$


Our $f_{\rm gas}$ is significantly lower than HSE-based measurements

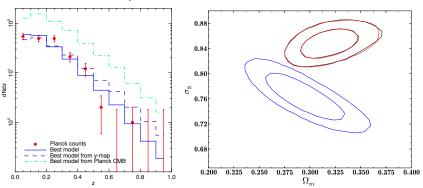
Baryon fraction (stars + gas)

 f_{\star} is largely insufficient to bridge the gap with the cosmic baryon fraction


Hydrostatic bias?

Matching WL and hydrostatic relations would require a hydrostatic bias $1-b=0.72^{+0.08}_{-0.07}$

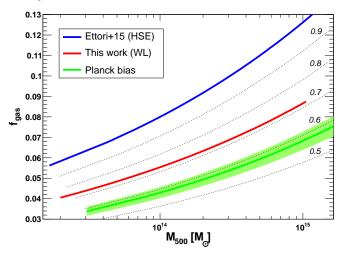
Comparison with numerical simulations


Comparison with hydrodynamical simulations (cosmo-OWLS, Le Brun et al. 2014)

Puzzling result not easy to explain for simulations

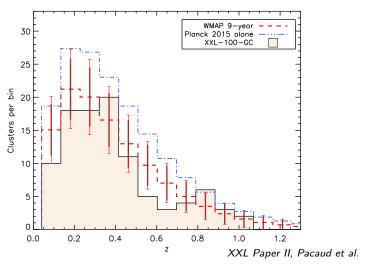
Implications for cosmology

Planck: inconsistency between CMB and cluster counts



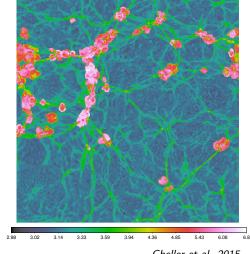
Planck Collaboration XX, 2013

The tension could be solved by invoking a very large HSE bias $1-b=0.58\pm0.04$


Implications for cosmology

Expected f_{gas} for 1 - b = 0.58

Large HSE bias strongly disfavored by $f_{\rm gas}$ data


XXL vs Planck cosmology

XXL prefers lower σ_8 compared to Planck CMB, agreement with clusters and WL shear

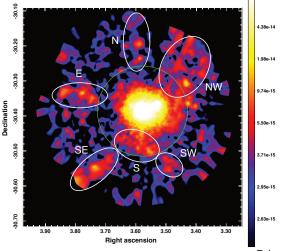
The Warm-Hot Intergalactic Medium (WHIM)

- Numerical simulations predict that $\sim 50\%$ of the baryons should be located in intergalactic filaments
- Temperatures in the range $10^{5.5} 10^7$ K
- Density, temperature, gas mass scale with filament mass

Gheller et al. 2015

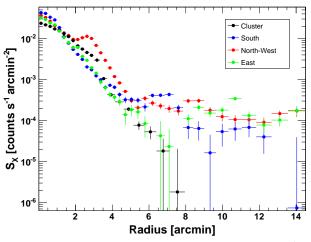
Abell 2744 (z = 0.306): the Pandora cluster

Abell 2744 is one of the HST "Frontier Fields" clusters



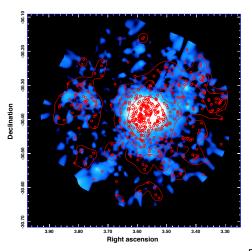
Jauzac et al. 2015

Jauzac et al. 2015: We detected ~ 50 lensed galaxies in this cluster, corresponding mass model known at 1% precision


XMM-Newton observation of Abell 2744

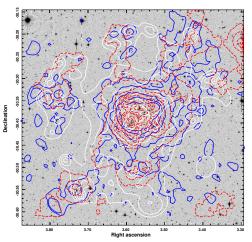
We discovered 5 regions of extended X-ray emission radially connected to the cluster

Hot gas filaments in Abell 2744


Significant extended emission detected in the direction of the filaments out to $\sim 4~\text{Mpc}$

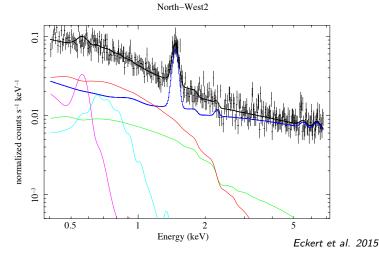
Eckert et al. 2015

Hot gas filaments in Abell 2744

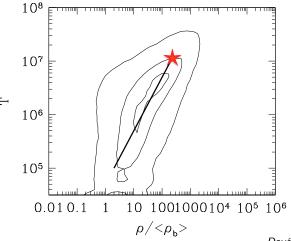

The filamentary structures correspond with overdensities of cluster galaxies (spectroscopically confirmed)...

Eckert et al. 2015

Hot gas filaments in Abell 2744

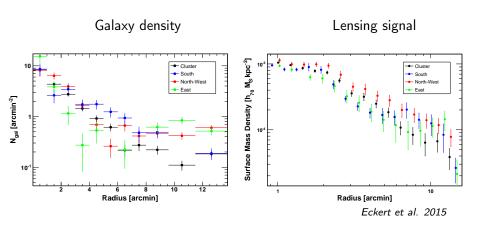

The filamentary structures correspond with overdensities of cluster galaxies ... and DM (CFHT weak lensing)!

Eckert et al. 2015


Nature of the filaments

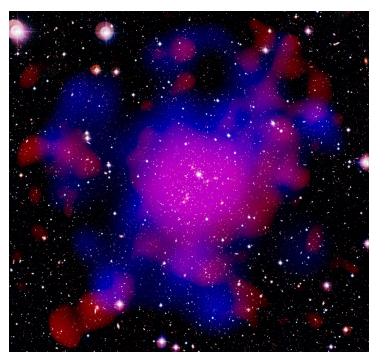
Spectral analysis reveals thermal gas with $\,\mathcal{T}\sim 1$ keV

We are observing diffuse hot gas originating from the LSS and heated up by the gravitational pull of A2744

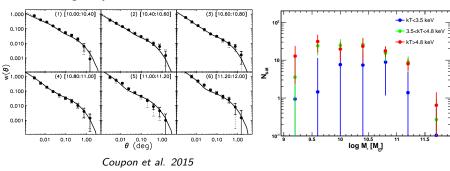

Is it the WHIM?

Davé et al. 2001

We are observing gas with overdensity \sim 200 and $T\sim10^7$ K: consistent with predictions for the high-T part of the WHIM.

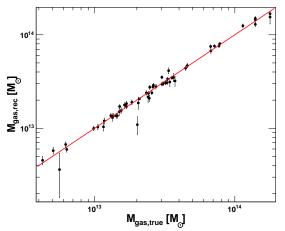

Galaxies and DM overdensity in the filaments

Excess galaxy and DM density is observed in the regions encompassing the filaments. The gas fraction in the filaments is 5-10%


Summary

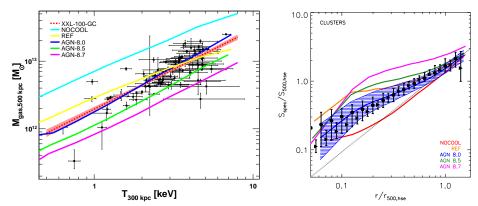
- WL-calibrated baryon fraction of XXL-100 clusters lower than expected
- Trouble to explain this result using cosmological simulations
- XXL prefers low σ_8 , similar to other cluster and WL shear measurements
- A large HSE bias as needed to reconcile Planck CMB and cluster counts would require an even lower $f_{\rm gas}$, this is challenging for our understanding of structure formation
- We discovered 3 filaments of hot gas radially connected to A2744
- The position of the filaments coincides with excesses in the distribution of galaxies and WL signal
- Properties consistent with WHIM, gas fraction 5-10%

Stellar fraction


We compute the 2-point correlation function of cluster galaxies in bins of galaxy stellar mass

Then $M_{\star} \propto \int_0^{R_{500}} w(R) R dR$

Validation using cosmological simulations


We used mock X-ray observations from numerical simulations to test the method

 $M_{
m gas}$ reconstructed with no bias and $\sigma_{
m int} < 6\%$

Comparison with numerical simulations

Strong AGN feedback is inconsistent with X-ray-only observations

Puzzling result not easy to explain for simulations