Recent highlights of the MAGIC telescopes

Oscar Blanch Bigas for the MAGIC collaboration

MAGIC

Major Atmospheric Gamma Imaging Cerenkov Telescope

The MAGIC Telescopes

MAGIC is an Imaging Atmospheric Cherenkov Telescope system consisting of two 17m diameter telescopes, located on Canary island La Palma

The MAGIC Collaboration

~170 scientists working in institutes from 10 countries across Europe & Asia: Bulgaria, Croatia, Finland, Germany, India, Italy, Japan, Poland, Spain and Switzerland

MAGIC kept Improving

• 2004 – MAGIC-I built

2016

Aleksić et al. (MAGIC) Astropart. Phys, 72,

- 2007 upgraded MAGIC-I readout
- 2009 MAGIC-II built

• 2011-2012 – upgrade of readout systems and MAGIC-I trigger and camera

Recovering data with LIDAR

Simultaneous to the data taking monitoring of the atmosphere transparency with LIDAR allows us to recover data affected by bad weather condition (clouds, calima)

log(E)

Δ

Used to recover MAGIC observations for V339 Del Nova outburst and Mrk501 MWL campaign.

Furniss et al, ApJ, 65, 2015 Aleksić et al. (MAGIC) A&A, 582, 2015

Main scientific targets for MAGIC

Galactic sources: Pulsars, PWN, SNR, Binaries

AGNs: BL Lacs, FSRQs, Radio galaxies

Fundamental physics: Dark matter, LIV, EBL, IGMF & cosmology

GRBs

Galactic Physics with MAGIC

Image credits: Daniel López, IAC

Crab Nebula: from IC peak to Klein-Nishina?

Crab Pulsar

First detection of Crab Pulsar at VHE back in 2008 (E>25 GeV), aggregating 320 hours led to detection above 400 GeV with spectrum extending up to TeV energies

Most likely, IC scattering off low energy photons and gamma rays produced in the vicinity of the light cylinder

Gamma-ray binaries: LS I 61+303

Gamma-ray binaries: LS I 61 +303

... 2014

MAGIC, submitted to A&A

VHE data collected over 8 years \rightarrow yearly variability consistent with the 4.5 years long-term modulation

Consistent with flip-flop (Zamanov et al. 2001, Torres et al. 2012, Papitto et al. 2012) **model where the system changes from propeller to ejector regime**

10

AGN Physics with MAGIC

MWL SED of Mrk 421 in Jan 2013

MWL campaign of an old friend in VHE gamma-ray astronomy in low (steady) state Shift of Synchrotron and IC peaks to lower energies

A canonical HBL moving to IBL observed for the first time

Periodic signal from PG 1553+113?

VHE data with MWL coverage may shed light on the underlying mechanism

Extreme flare from radio galaxy: IC 310

Aleksić et al. (MAGIC) Science 346, 2014

Expanding the VHE gamma-ray universe

Furthest AGN detected: FSRQ

For distant sources sub-TeV gamma-rays are absorbed in extragalactic background light

FSRQ has strong broad line region which can absorb VHE photons

Until recently the furthest FSRQ detected at VHE was at z~0.6

FSRQ	Redshift	First VHE detection by:	Year
3C 279	0.536	MAGIC	2006
PKS 1510-089	0.361	HESS	2009
PKS 1222+216 (4C +21.35)	0.432	MAGIC	2010
B0218+35	0.944	MAGIC	2014
PKS 1441+25	0.939	MAGIC	2015
S4 0954+65*	0.368	MAGIC	2015

FSRQ at redshift ~ 1

Detection of FSRQ at z~1 have increased the accessible universe at VHE 16

MAGIC kept Improving

- 2004 MAGIC-I built
- 2007 upgraded MAGIC-I readout
- 2009 MAGIC-II built

• 2011-2012 – upgrade of readout systems and MAGIC-I trigger and camera

MAGIC kept Improving

- 2004 MAGIC-I built
- 2007 upgraded MAGIC-I readout
- 2009 MAGIC-II built

• 2011-2012 – upgrade of readout systems and MAGIC-I trigger and camera

Cosmology and Fundamental Physics

Constraints on EBL

One of the key observation programs of MAGIC

B0218+357 \rightarrow EBL scaling factor α = 1.2±0.4_{sta}; 95% C.L limit including systematics α < 2.6

PKS 1441+25 \rightarrow 95% C.L. Limit including systematics α < 1.73

Exploring the EBL at z~0.9 with MAGIC data

Constraints on EBL

Dark matter searches with MAGIC

Large exposure (158h) of Segue 1 dSph galaxy

Result acknowledged by PDG

Combining MAGIC with Fermi data to further improve the limits

New inclusive analysis approach that is able to combine data from other detectors 20

Summary

- The **first eleven successful** years of scientific operation (and counting): 32 new VHE detections (24 AGNs); > 110 peer reviewed papers, 5 in Science Magazine
- MAGIC is at its most productive time in terms of physics (also best sensitivity)
 - → Un-solving the comprehension of **acceleration mechanism in pulsars**
 - → Detailed broad band studies of Crab Nebula, searching for Klein-Nishina range
 - → Long term behaviour of binary systems and AGNs
 - → Transition from an HBL to IBL-like for low emission state in Mrk 421
 - Ultra fast variability in AGNs (minute scale)
 - Increasing the accessible volume of the Universe with sources at $z\sim1$
 - → Measurements on the **EBL density** at different redshifts
 - → **Dark matter searches** leading to best limits on dark matter cross-section from dSph
- **Collaboration** efforts with **VERITAS**, **HESS and HAWC** as well as **follow ups** of gravitational waves and neutrinos will hopefully soon get into highlight talks

(Fermi alerts already here)

- 8 more MAGIC talks in Texas Symposium 2015:
 - → Intergalactic Magnetic Fields, Paolo da Vela
 - → PG 1553 +113 periodicity, Gareth Hughes
 - → First detection at VHE of S4 0954+65, Giovanna Pedaletti
 - → Detection of the FSRQ PKS 1441+25, Josefa Becerra
 - → Extreme X-ray flaring activity of Mrk 501, Josefa Becerra
 - → Brightest outburst of S5 0716+714, Marina Manganaro
 - Pulsar Observations, Takayuki Saito
 - Insight into Black Hole Lightnings: IC 310, Pierre Colin

The end