How the obs. quantities of strong grav. lens effect depend on BH's mass and spin

SAIDA Hiromi (Daido Univ.,Japan)

* Under preparation for paper submission

28th Texas Sympo. 2015.Dec.14-18 at Geneva, Swiss (Dec.17, talk)

1. Introduction: Basic idea

1.1 From candidate to itself

- Best observational knowledge of BH at present
 - → BH candidates by Newtonian gravity
 - \$\psi\$ Large Gap in Physics !!
- BH is a general relativistic (GR) object
 - → The method to find "BH itself" is at least a direct detection of the GR effect of BH.

What is it? How can we do it?

1.2 Meaning of BH detection in GR context

• Theoretical (mathematical) fact in GR

— Uniqueness Theorem

Asymptotic flat BH spacetime is uniquely specified by 3 parameters:

 $M_{
m BH}$: mass

 $J_{
m BH}$: spin angular momentum

 $Q_{
m BH}$: electric charge

- $\diamond Q_{\mathrm{BH}} = 0$ is expected for real situations.
 - ightarrow BH is specified by $M_{
 m BH}$ and $J_{
 m BH}$. (Kerr BH)

Define the meaning of "direct" detection of BH

BH Detection is ... -

To measure the parameters M and χ by detecting the GR effect of BH.

- \diamond Mass in length scale: $M = \frac{GM_{\rm BH}}{c^2} \ [{\rm cm}]$
- \diamond Dimensionless spin parameter: $\chi = \frac{a}{M}$ [no-dim]

(usual spin parameter: $a = J_{\rm BH}/(M_{\rm BH}\,c)$ [cm])

 \diamond Kerr BH horizon radius: $r_{\rm BH} = M \left[1 + \sqrt{1 - \chi^2} \right]$ $\Rightarrow 0 < \chi < 1$

1.3 GR effect of BH as our target

- Target: Strong Gravitational Lens (SGL) effect
- An ideal situation we want to observe:
 - Clear environment around BH except the source
 - ♦ Burst-like and spherical emission

seen from the source

Basic fact in our situation

Observing two quantities of SGL

$$egin{cases} \Delta t_{
m obs} &: ext{ Time delay} \ \mathcal{R}_{
m obs} = rac{F_1}{F_0} &: ext{ Flux ratio} \end{cases}$$
 of W_0 and W_1 ,

gives the BH parameters $(M\,,\,\chi)$,

if the inclination angle $heta_{
m obs}$,

the source's motion $(ec{x}_{ ext{ iny S}},ec{u}_{ ext{ iny S}})$,

and the source's emission spectrum $I_{
m s}(
u_{
m s})$

are known.

→ What should we do with observation?

• Steps for extracting (M,χ) from observation.

(a) Theory:

Prepare numerically the date set of $(\Delta t_{\rm obs}, \mathcal{R}_{\rm obs})$ with various values of $(M, \chi; \theta_{\rm obs}, \vec{x}_{\rm s}, \vec{u}_{\rm s}, I_{\rm s})$.

(b) Observation:

Observe the target (BH candidate) and take the data $(\Delta t_{\rm obs}, \mathcal{R}_{\rm obs})$ as many as possible.

(c) Comparison:

Make the table from (a) and (b).

 \rightarrow See the next page \cdots

♦ If this table is obtained by steps (a), (b) and (c),

obs. data	corresponding theoretical data by step (a)
$(\Delta t_{ m obs}, \mathcal{R}_{ m obs})$	$(M,\chi;\mathrm{C}),\mathrm{C}=(heta_\mathrm{obs},ec{x}_\mathrm{s},ec{u}_\mathrm{s},I_\mathrm{s})$
(1.32, 0.27)	$(9.0,0.1;\mathrm{C}_0)$, $(\boxed{3.2,0.8};\mathrm{C}_0')$, $(5.8,0.8;\mathrm{C}_0'')$, \cdots
(4.05, 0.03)	$(3.2, 0.8; C_1)$, $(2.1, 0.9; C_1')$, $(1.9, 0.5; C_1'')$, \cdots
(7.94, 1.04)	$(0.8,0.3;\mathrm{C}_2)$, $(7.4,0.9;\mathrm{C}_2')$, $(\boxed{3.2,0.8};\mathrm{C}_2'')$, \cdots
(9.28, 0.44)	$(3.2, 0.8; C_3)$, $(4.5, 0.5; C_3')$, $(1.9, 0.5; C_3'')$, \cdots

 \rightarrow then we suggest $\ (M,\chi)=(3.2\,,\,0.8)$

This talk discusses the steps (a) and (b)

2. SGL's Observable Quantities

2.1 Setup for numerical calculation

- ullet Input parameters: M , χ , $heta_{
 m obs}$, $ec{x}_{
 m s}$, $ec{u}_{
 m s}$, $ec{l}_{
 m s}$
- ullet Output parameters: $\Delta t_{
 m obs}$, $\mathcal{R}_{
 m obs}$ \longleftarrow I calculate
- Back Ground: Kerr spacetime

I calculate these quant.

$$\begin{split} \mathrm{d}s^2 &= g_{tt}\,\mathrm{d}t^2 + 2g_{t\varphi}\,\mathrm{d}t\,\mathrm{d}\varphi + g_{rr}\,\mathrm{d}r^2 + g_{\theta\theta}\,\mathrm{d}\theta^2 + g_{\varphi\varphi}\,\mathrm{d}\varphi^2 \\ \begin{cases} g_{\mu\nu} &= g_{\mu\nu}(r,\theta\,;\,M,\chi) & \text{determined by }M\,,\,\chi \\ x^\mu &= (\,t\,,\,r\,,\,\theta\,,\,\varphi\,) & \text{Boyer-Lindquist coord.} \end{cases} \end{split}$$

2.2 Steps to calculate $(\Delta t_{\mathrm{obs}},\,\mathcal{R}_{\mathrm{obs}})$

- Step1. Solve Null Geodesic Eq. which connects the source and observer (shooting)
 - \rightarrow Time delay Δt is obtained.
- Step2. Solve Geodesic Deviation Eq.
 - \rightarrow Visible solid-angle $\Delta\Omega$ is obtained.
- Step3. Specify the source's velocity $\vec{u}_{\rm s}$ and specific intensity $I_{\rm s}(\nu_{\rm s})$ [erg/s cm² Hz Ω].
 - \rightarrow Flux ratio \mathcal{R}_{obs} is obtained.

2.3 Step1: Null geodesics and $\Delta t_{ m obs}$

- Some notes on Kerr BH:
- \diamond BH horizon at t=const. is the sphere of radius $r_{\rm BH}$

$$r_{\rm BH} = M \left[1 + \sqrt{1 - \chi^2} \right] \, [\rm cm]$$

- \diamond Ergo-surface : $r_{\rm erg} = M \left[1 + \sqrt{1 \chi^2 \cos^2 \theta} \right]$
 - \rightarrow Radial motion $(\theta, \varphi = \text{const.})$ is
 - impossible in the ergo-region $r < r_{
 m erg}$.
 - ightarrow Any object rotates with BH spin in " $r \leq r_{
 m erg}$ ".
- \diamond Geodesic motion is "three-dimensional" in general, except for on the equatorial plane $\theta=\pi/2$.

Some examples of light rays:

$$M = 1.0$$

 $\chi = 0.8$

$$r_s = 2.2 r_{BH}$$

 $\theta_s = 0.7\pi$

$$\varphi_s = 0$$

$$r_{obs} = 100 r_{BH}$$

 $\theta_{obs} = 9\pi/31$

$$\varphi_{\rm obs} = \pi/12$$

Higher winding rays are omitted.

• Time delay $\Delta t_{\rm obs}$ is read from the "r-t plot" of the primary ray W_0 and secondary ray W_1 .

ullet Total Doppler effect: $\dfrac{
u_{
m S}}{
u_{
m obs}} = \dfrac{k_{\mu}u_{
m S}^{\mu}}{k_{\mu}u_{
m obs}^{\mu}}$ (k^{μ} : null vector)

2.4 Steps2 & 3: Geodesic deviation and $R_{ m obs}$

• Geodesic deviation eq. \Rightarrow Cross section of beam \Rightarrow Visible solid-angle $\Delta\Omega_{\rm obs}$ \Rightarrow Obs. Flux $F_{\rm obs}$

2.5 Ex. of numerical results: preliminary

Parameters of next figures:

Configuration: ———

$$\circ$$
 BH: $(M, \chi) = (1.0, 0.8)$

Source velocity:

$$u_{\rm s}^{\mu} = (1.49, 0, 0, 0.05)$$

 \circ Inclination: $\theta_{\rm obs} = \frac{12}{31}\pi$

- \circ Line emission: $I_{
 m s}(
 u_{
 m s}) = \delta(
 u_{
 m s}
 u_{
 m c})$, $u_{
 m c}$ is const.
- \circ Emission at $\nu_{
 m c}
 ightarrow {
 m Obs.}$ With $u_{
 m obs(0)}$ and $u_{
 m obs(1)}$

ullet Calculate $\Delta t_{
m obs}$, $F_{
m obs(1)}/F_{
m obs(0)}$, $u_{
m obs(1)}/
u_{
m obs(0)}$

at every azimuthal angle of obs. $arphi_{
m obs}$

 \diamond coloring of φ_{obs} :

$arphi_{ m obs}$	$egin{pmatrix} 0 & \longrightarrow \\ \end{array}$	2π
color	$R \rightarrow G$	$\rightarrow B$

 \diamond hor. : $\Delta t_{
m obs}/M$ — ver. : $F_1/F_0({
m left})$, $u_1/
u_0({
m right})$

• Replace with $u_{\rm s}^{\mu}=(2.7\,,\,-1\,,\,0\,,\,0)$ the other parameters are the same

- \diamond Various values of \mathcal{R}_{obs} is possible!
- \diamond Typically $O(\Delta t_{\rm obs}) \sim O(\pi r_{\rm s})$ (= 10 for this case)
- → There should be the case which is
 detectable by the present telescope capability!

3. SGL in the Light Curve

3.1 Indication by sec.2

- The ray W₀
 passes
 no causitic.
- The ray W₁
 passes
 one caustic.

 \rightarrow The effect of caustic on the light curve may be important for the observation.

3.2 Gouy phase shift: wave optics issue (not GR)

Phase shift of waves when passing the caustic (an interference effect)

- positive freq. mode
 - \rightarrow phase shift by $-\pi/2$
- negative freq. mode
 - \rightarrow phase shift by $+\pi/2$
- \Rightarrow ex. $\cos(\omega t) \leftrightarrow \sin(\omega t)$
- ⇒ This is the Hilbert transformation of wave form.

3.3 Expected feature of light curve

- Gouy Phase Shift
 Hilbert trans.
 of wave form
- Observed Flux

$$F_{\rm obs} \propto |E_{\rm obs}|^2$$

($E_{\rm obs}$: amplitude)

20

Principle of observation

Find the GPS (Gous Phase Shifted) light curve from the time series data taken by a telescope. Then, the delay $\Delta t_{\rm obs}$ and ratio $\mathcal{R}_{\rm obs}$ are obtained.

– Typeset by Foil $T_{
m FX}$ –

4. Summary

- "Direct" BH detection is to measure M, χ through GR effects.
- Focus on the Strong Gravitational Lens (SGL)
- Obs. quantities $(\Delta t_{\rm obs}, F_1/F_0)$ seem to be detectable by the present telescope capability !? \rightarrow Already estimated for a radio telescope in Japan. How about X-ray telescope ?
- Light curve → the Gouy effect may appear.
- If $\nu_{(1)}/\nu_{(0)}$ is also an observable, it is useful.