

Flat spectrum radio quasars at very high energy gamma-rays: the new detection of PKS 1441+25

Josefa Becerra González
on behalf of MAGIC and Fermi-LAT collaborations
NASA Goddard Space Flight Center
University of Maryland
Instituto de Astrofísica de Canarias
josefa.becerra@nasa.gov

co-Is: M. Nievas, M. Manganaro, F. Tavecchio, E. Linfors, A. Moralejo, L. Pacciani

MWL Collaborators: G. De Caneva, A. Dominguez, V. Fallah Ramazani, T. Hovatta, S. Jorstad, A. Lähteenmäki, A. Marscher, J. McEnery, R. Ojha, K. Satalecka, J. Sitarek, D. Thompson, M. Tornikoski +

The very high energy gamma-ray sky

- To date ~60 extragalactic sources (mainly blazars) are known at very high energy gamma-rays (VHE, E>100 GeV) band
- Only 5 of them are flat spectrum radio quasars (FSRQs)
- They are the most distant VHE sources

 -> allow us to constrain the
 extragalactic background light (EBL)
 absorption

Source	Redshift	Discoverer	Year			
3C 279	0.5362	MAGIC	2006			
PKS 1510-089	0.361	HESS	2009			
PKS 1222+216	S 1222+216 0.432 MAGIC		2010			
S3 0218+35	0.944	MAGIC	2014			
S4 0954+65*	0.368	MAGIC	2015			
PKS 1441+25 0.939		MAGIC	2015			
* classification under debate						

TeVcat

The very high energy gamma-ray sky

- To date ~60 extragalactic sources (mainly blazars) are known at very high energy gamma-rays (VHE, E>100 GeV) band
- Only 5 of them are flat spectrum radio quasars (FSRQs)
- They are the most distant VHE sources
 —> allow us to constrain the
 extragalactic background light (EBL)
 absorption

Source	Redshift	Discoverer	Year				
3C 279	0.5362	MAGIC	2006				
PKS 1510-089	0.361	HESS	2009				
PKS 1222+216	0.432	0.432 MAGIC					
S3 0218+35	0.944	MAGIC	2014				
S4 0954+65*	0.368	MAGIC	2015				
PKS 1441+25	0.939	MAGIC	2015				
* classification under debate							

TeVcat

http://www.nasa.gov/feature/goddard/nasas-fermi-satellite-kicks-off-a-blazar-detecting-bonanza Ahnen et al. 2015, 815, L23

The very high energy gamma-ray sky

- To date ~60 extragalactic sources (mainly blazars) are known at very high energy gamma-rays (VHE, E>100 GeV) band
- Only 5 of them are flat spectrum radio quasars (FSRQs)
- They are the most distant VHE sources

 -> allow us to constrain the
 extragalactic background light (EBL)
 absorption

Source	Redshift	Discoverer	Year				
3C 279	0.5362	MAGIC	2006				
PKS 1510-089	0.361	HESS	2009				
PKS 1222+216	0.432	MAGIC	2010				
S3 0218+35	0.944	MAGIC	2014				
S4 0954+65*	0.368	MAGIC	2015				
PKS 1441+25	0.939	MAGIC	2015				
* classification under debate							

TeVcat

http://www.nasa.gov/feature/goddard/nasas-fermi-satellite-kicks-off-a-blazar-detecting-bonanza Ahnen et al. 2015, 815, L23

FSCOS OF VHE

- Why only 5 FSRQs detected in VHE?
 - Low synchrotron peak frequency
 - Intrinsic absorption
 - High redshift (typically)
- They can be mostly detected during flaring/spectral hardening states
- VHE help us to constrain the location of the emitting region
- Typically explained in the "far dissipation" external Compton scenario

Sambruna R. M

FSRQs: the "canonical" scenario

DUSTY TORUS

FSRQs: the "far dissipation" scenario

DUSTY TORUS

Instruments:

MAGIC:

- Air Cherenkov technique
- Stereoscopic system of two 17 m telescopes
- Located in Canary Islands
- Energy Threshold ~50 GeV
- MWL instruments:
 - Fermi-LAT: High energy gamma-rays (E>100 MeV)
 - X-rays: Swift-XRT, NuSTAR
 - Optical-UV: KVA (R-band), Swift-UVOT
 - Radio: Metsähovi
- Fermi+MAGIC: 100 MeV to ~400 GeV (FSRQs) -> probe intrinsic absorption

[Previous | Next | ADS]

Discovery of Very High Energy Gamma-Ray Emission from the distant FSRQ PKS 1441+25 with the MAGIC telescopes

ATel #7416; R. Mirzoyan (Max-Planck-Institute for Physics)
on 20 Apr 2015; 02:09 UT

Credential Certification: Masahiro Teshima (mteshima@mppmu.mpg.de)

Subjects: Gamma Ray, TeV, VHE, AGN, Blazar

Referred to by ATel #: 7417, 7433, 7459

The MAGIC collaboration reports the discovery of very high energy (VHE; E>100 GeV) gammaray emission from the FSRO PKS 1441+25 (RA=14h43m56.9s DEC=+25d01m44s), located at redshift z=0.939 (Shaw et al. 2012, ApJ, 748, 49). The object was observed with the MAGIC telescopes for ~2 hours during the night 2015 April 17/18, and for ~4 hours during 18/19. A preliminary analysis of the data yields a detection with a statistical significance of more than 6 standard deviations for the night of April 17/18, and more than 11 standard deviations for 18/19. This is the first time a significant signal at VHE gamma rays has been seen from PKS 1441+25. The flux above 80 GeV is estimated to be about 8e-11 cm^-2 s^-1 (16\% of Crab Nebula flux). PKS 1441+25 has entered an exceptionally high state at optical, X-, and Gamma-ray frequencies (ATel #7402), which triggered the MAGIC observations. The Swift Follow-up observation from 18/19 revealed high X-rays April that the state continuing: in http://www.swift.psu.edu/monitoring/source.php?source=PKS1441+25 MAGIC observations on PKS1441+25 will continue during the following nights, and multiwavelength observations are encouraged. The MAGIC contact persons for these observations are R. Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de) and E. Lindfors (elilin@utu.fi). MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Canary island of La Palma, Spain, and designed to perform gamma-ray astronomy in the energy range from 50 GeV to greater than 50 TeV.

Related

- 7459 A Giant NIR flare of the FRQS PKS1441+25
- 7433 Very-high-energy gamma-ray emission from PKS 1441+25 detected with VERITAS
- 7429 ASAS-SN Detection of an Optical Brightening in FSRQ PKS 1441+25
- 7417 High Optical Polarization
 Detected in PKS 1441+25
- 7416 Discovery of Very High Energy Gamma-Ray Emission from the distant FSRQ PKS 1441+25 with the MAGIC telescopes
- 7402 Optical, X-, Gamma-ray flare of the FSRQ PKS 1441+25
- 6923 Optical Activity of the Flaring Gamma-ray Blazar PKS 1441+25
- 6895 NIR Photometry of the FRQS PKD1441+25
- 6878 Fermi LAT Detection of a Bright GeV Flare from the FSRQ PKS 1441+25

[Previous | Next | ADS]

Discovery of Very High Energy Gamma-Ray Emission from the distant FSRQ PKS 1441+25 with the MAGIC telescopes

ATel #7416; R. Mirzoyan (Max-Planck-Institute for Physics)
on 20 Apr 2015; 02:09 UT

Credential Certification: Masahiro Teshima (mteshima@mppmu.mpg.de)

Subjects: Gamma Ray, TeV, VHE, AGN, Blazar

Referred to by ATel #: 7417, 7433, 7459

The MAGIC collaboration reports the discovery of very high energy (VHE; E>100 GeV) gam naray emission from the FSRO PKS 1441+25 (RA=14h43m56.9s DEC=+25d01m44s), located at redshift z=0.939 (Shaw et al. 2012, ApJ, 748, 49). The object was observed with the MAGIG telescopes for ~2 hours during the night 2015 April 17/18, and for ~4 hours during 18/19. preliminary analysis of the data yields a detection with a statistical significance of more than 6 standard deviations for the night of April 17/18, and more than 11 standard deviations for 18/19. This is the first time a significant signal at VHE gamma rays has been seen from PKS 1441+25. The flux above 80 GeV is estimated to be about 8e-11 cm^-2 s^-1 (16\% of Crab Nebula flux). PKS 1441+25 has entered an exceptionally high state at optical, X-, and Gamma-ray frequencies (ATel #7402), which triggered the MAGIC observations. The Swift Follow-up observation from 18/19 revealed high X-rays April that the state continuing: in http://www.swift.psu.edu/monitoring/source.php?source=PKS1441+25 MAGIC observations on PKS1441+25 will continue during the following nights, and multiwavelength observations are encouraged. The MAGIC contact persons for these observations are R. Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de) and E. Lindfors (elilin@utu.fi). MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Canary island of La Palma, Spain, and designed to perform gamma-ray astronomy in the energy range from 50 GeV to greater than 50 TeV.

Related

- 7459 A Giant NIR flare of the FRQS
- 7433 Very-high-energy gamma-ray emission from PKS 1441+25 detected with VERITAS
- 7429 ASAS-SN Detection of an Optical Brightening in FSRQ PKS 1441+25
- 7417 High Optical Polarization Detected in PKS 1441+25
- 7416 Discovery of Very High
 Energy Gamma-Ray Emission
 from the distant FSRQ PKS
 1441+25 with the MAGIC
- 7402 Optical, X-, Gamma-ray flare of the FSRQ PKS 1441+25
- Gamma-ray Blazar PKS 1441+25
- 6895 NIR Photometry of the FRQS
- 6878 Fermi LAT Detection of a Bright GeV Flare from the FSRQ PKS 1441+25

[Previous | Next | ADS]

Discovery of Very High Energy Gamma-Ray Emission from the distant FSRQ PKS 1441+25 with the MAGIC telescopes

ATel #7416; R. Mirzoyan (Max-Planck-Institute for Physics) on 20 Apr 2015; 02:09 UT

Credential Certification: Masahiro Teshima (mteshima@mppmu.mpg.de)

Subjects: Gamma Ray, TeV, VHE, AGN, Blazar

Referred to by ATel #: 7417, 7433, 7459

The MAGIC collaboration reports the discovery of very high energy (VHE; E>100 GeV) gammaray emission from the FSRQ PKS 1441+25 (RA=14h43m56.9s DEC=+25d01m44s), located at redshift z=0.939 (Shaw et al. 2012, ApJ, 748, 49). The object was observed with the MAGIC 6878 Fermi LAT Detection of a telescopes for ~2 hours during the night 2015 April 17/18, and for ~4 hours during 18/19. A preliminary analysis of the data yields a detection with a statistical significance of more than 6 standard deviations for the night of April 17/18, and more than 11 standard deviations for 18/19. This is the first time a significant signal at VHE gamma rays has been seen from PKS 1441+25. The flux above 80 GeV is estimated to be about 8e-11 cm^-2 s^-1 (16\% of Crab Nebula flux). PKS 1441+25 has entered an exceptionally high state at optical, X-, and Gamma-ray frequencies (ATel #7402), which triggered the MAGIC observations. The Swift Follow-up observation from April 18/19 revealed that the high state in X-rays is continuing: http://www.swift.psu.edu/monitoring/source.php?source=PKS1441+25 MAGIC observations on PKS1441+25 will continue during the following nights, and multiwavelength observations are encouraged. The MAGIC contact persons for these observations are R. Mirzovan (Razmik.Mirzoyan@mpp.mpg.de) and E. Lindfors (elilin@utu.fi). MAGIC is a system of two 17m-diameter Imaging Atmospheric Cherenkov Telescopes located at the Canary island of La Palma, Spain, and designed to perform gamma-ray astronomy in the energy range from 50 GeV to greater than 50 TeV.

- 7459 A Giant NIR flare of the FRQS PKS1441+25
- 7433 Very-high-energy gamma-ray emission from PKS 1441+25 detected with VERITAS
- 7429 ASAS-SN Detection of an Optical Brighte PKS 1441+25
- 7417 High Optical Polarizat ected in PKS 1441+25
- 7402 Optical, X-, Gamma-ray flare of the FSRQ PKS 1441+25
- 6923 Optical Activity of the Flaring ma-ray Blazar PKS
- 6895 NIR Photometry of the FRQS PKD1441+25
- Bright GeV Flare from the FSRQ PKS 1441+25
- It is the most distant (together with S3 0218+357) VHE source, located at z=0.94
- Observations started on Apr 17-18 2015 after a high state alert from Fermi-LAT (E>10GeV), optical and X-Rays.

Detection during 10 days of consecutive observations: 4010 +/- 160 gamma-ray like events

PKS 1441+25

- Two flux states can be distinguished during the flare
- Halving time scale ~6 days
- No signal was detected in May (after Moon break)

Ahnen et al. 2015, 815, L23

PKS 1441+25

- Two flux states can be distinguished during the flare
- Halving time scale ~6 days
- No signal was detected in May (after Moon break)

Ahnen et al. 2015, 815, L23

PKS 1441+25

"Far dissipation"
external Compton
scenario

Period	$\gamma_{ m min}$	$\gamma_{\rm b}(10^4)$	$\gamma_{\rm max}(10^6)$	n_2	B (G)	$K (10^3 \mathrm{cm}^{-3})$	$ u_{IC}[Hz]$	CD
A	80	1.0	1.0	3.55	0.15	2.80	24.2	24
В	80	1.0	1.0	3.70	0.15	4.00	24.1	25
\mathbf{C}	50	0.8	1.0	3.75	0.17	3.35	24.0	21
D	50	0.5	0.2	3.90	0.23	2.00	23.6	13
Archival	20	10^{-2}	3×10^{-2}	3.05	0.35	70	22.4	7

Doppler factor =15

Ahnen et al. 2015, 815, L23

See video at:

https://youtu.be/AJh7fq7tYfg

Credits: NASA

Credits: NASA

Probing the EBL models with PKS 1441+25

- Spectrum measured in the energy range 40 to 250 GeV
- For the first time extragalactic background light (EBL) models are tested at z=0.94 in the VHE regime.
- With current generation of EBL models: Dominguez +11, Franceschini+08, Gilmore+12, Scully+14

Observed: LRT LogP vs power-law=4.2 sigma EBL corrected: Compatible power-law 7=3.18 ± 0.15stat ± 0.18sys

Probing the EBL models with PKS 1441+25

- Likelihood Ratio Test (e.g. Ackermann et al. 2012, Abramowski et. 2013)
- Different intrinsic spectral shape tested: powerlaw, logparabola and power-law with cut off.
- Different EBL models
- Maximum optical depth scaling factor (ατ) from models assuming a power-law as intrinsic spectrum: α≤1.7
- Maximum scaling factor from EBL measurements
 (Scully et al 2014): α≤3.4
- © Compatible with previous measurements from Fermi: $\alpha=1.3+/-0.4$ (0.5 < z < 1.6)

Upper limits at 95 % confidence level on the relative EBL opacity lpha

EBL model	Shape	$lpha_{ m best}^{ m nominal}$	$lpha_{ m w/syst}^{ m UL}$	Param. (best fit)			P – value	
			-	p_0	p_1	p_2	p_3	
PWL	No EBL	_	_	-11.9	-4.6			< 0.01
PWL	F08	$1.09^{+0.36}_{-0.31}$	1.72	-11.6	-3.1			0.50
PWL	D11	$1.09^{+0.37}_{-0.32}$	1.73	-11.5	-3.1			0.47
PWL	G12	$1.09_{-0.32}^{+0.37} \\ 0.99_{-0.28}^{+0.33}$	1.55	-11.4	-2.7			0.51
PWL	S14 (max)	$1.09^{+0.37}_{-0.32}$	1.73	-11.5	-3.1			0.47
PWL	S14 (min)	$2.20^{+0.70}_{-0.61}$	3.41	-11.4	-2.7			0.54
LP	No EBL	-	-	-11.9	-4.7	3.2		0.39
$_{ m LP}$	F08	$0.35^{+1.06}_{-1.58}$	1.69	-11.8	-4.2	2.2		0.40
$_{ m LP}$	D11	$0.18^{+1.20}_{-1.42}$	1.68	-11.8	-4.4	2.7		0.39
$_{ m LP}$	G12	$0.37^{+0.92}_{-1.63}$	1.53	-11.7	-3.9	2.0		0.40
$_{ m LP}$	S14 (max)	$0.18^{+1.20}_{-1.42}$	1.68	-11.8	-4.4	2.7		0.39
$_{ m LP}$	S14 (min)	$1.64^{+1.25}_{-3.56}$	3.40	-11.5	-3.2	0.83		0.42
PWLsc	No EBL	-	-	-6.2	1.4	-0.41	0.48	0.27
PWLsc	F08	$0.22^{+1.20}_{-3.21}$	1.70	-7.4	0.46	-0.13	0.47	0.27
PWLsc	D11	$0.15^{+1.23}_{-3.14}$	1.68	-2.7	2.7	-1.9	0.34	0.27
PWLsc	G12	$0.37^{+0.92}_{-3.36}$	1.54	-1.4	2.6	-3.0	0.27	0.27
PWLsc	S14 (max)	$0.15^{+1.23}_{-3.14}$	1.68	-2.7	2.7	-1.9	0.34	0.27
PWLsc	S14 (min)	$1.75^{+1.15}_{-4.74}$	3.40	-2.4	0.39	-5.8	0.17	0.29

References. — F08: Franceschini et al. (2008), D11: Domínguez et al. (2011), G12: Gilmore et al. (2012), S14: Scully et al. (2014).

Note.—The normalization factor 10^{p_0} is given in erg cm⁻² s⁻¹ units.

Take Mome

- New discovery of PKS 1441+21 at z=0.94 in the VHE band (energy threshold of ~40 GeV!). Compatible with state-of-the-art EBL models
- PKS 1441+25 shows an extreme shift of the SED peaks
- Detection of the FSRQs 3C 279, PKS 1222+21 and PKS 1510-089 during moderate HE gamma-ray activity during 2013-2014 observation campaign
- The only common MWL feature on 3C 279, PKS 1222+21 and PKS 1510-089 during the VHE detection epochs is the ejection of a new VLBA component
- No hints of intrinsic absorption features compatible with the absorption within the broad line region have been found so far in VHE FSRQs —> favor "far dissipation" scenario

