Accretion and rotation power in millisecond pulsars

Alessandro Papitto (ICE CSIC-IEEC Barcelona)

16.12.2015 – 28th Texas Symposium on Relativistic Astrophysics – Geneve (Switzerland)

Rotation and accretion powered pulsars

Credits: NASA's Goddard Space Flight Center

The fundamental plane of pulsars

Millisecond pulsars

[Backer+ 1982 Nature]

- weakly magnetized
- often found in globular clusters \rightarrow old systems
- often in binaries

[Bisnovatyi-Kogan & Komberg 1974, Alpar+, Radhakrishnan+ 1982]

A new transient in M28, IGR J18245-2452

X-ray luminosity \sim few x 10³⁶ erg/s \rightarrow accretion power

IGR J18245-2452: a new hard X-ray transient discovered by INTEGRAL

ATel #4925; D. Eckert (ISDC, Switzerland), M. Del Santo, A. Bazzano (INAF/IAPS Rome, Italy), K. Watanabe (FGCU, USA), A. Paizis (INAF-Milano, Italy), E. Bozzo, C. Ferrigno (ISDC, Switzerland), I. Caballero (CEA, France), L Sidoli (INAF-IASF Milano, Italy), L. Kuiper (SRON, Netherlands) on 29 Mar 2013; 11:18 UT Distributed as an Instant Email Notice Transients Credential Certification: E. Bozzo (enrico.bozzo@unige.ch)

Discovery of an accreting millisecond pulsar

 $\begin{array}{l} \mathsf{Pspin}=3.9\ \mathsf{ms}\\ \mathsf{Porb}=11.0\ \mathsf{hr}\\ \mathsf{Mcomp}\sim 0.2\ \mathsf{Msun} \end{array}$

Discovery of a transitional pulsar

Radio PSR (rotation power) **X-ray pulsar** (accretion power)

Parameter	IGR J18245–2452	PSR J1824–2452I
Right Ascension (J2000)	$18^h \ 24^m \ 32.53(4)^s$	
Declination (J2000)	$-24^{\circ} 52' 08.6(6)''$	
Reference epoch (MJD)	56386.0	
Spin period (ms)	3.931852641(2)	3.93185(1)
Spin period derivative	$< 2 \times 10^{-17}$	
RMS of pulse time delays (ms)	0.1	
Orbital period (hr)	11.025781(2)	11.0258(2)
Projected semi-major axis (lt-s)	0.76591(1)	0.7658(1)
Epoch of zero mean anomaly (MJD)	56395.216889(5)	

Papitto et al. 2013, Nature, 501, 517

Reactivation of the radio pulsar

Weak radio pulsar signal (~10-50 microJy) detected less than two weeks since the end of the X-ray outburst (GBT, PKS, WSRT)

M28: a decade of observations

Radio pulsar faint and irregularly eclipsed

Past X-ray brightening seen by Chandra - August 2008

Swings driven by mass in-flow rate variability

Low Mass in-flow rate: Magnetic field dominates \rightarrow rotation powered Radio PSR

High Mass in-flow rate: Gravity dominates

 \rightarrow accretion powered X-ray PSR

[Stella+ 1994; Campana+ 1998; Burderi+ 2001]

Credits: NASA's Goddard Space Flight Center

More transitional pulsars: PSR J1023+0038

A 1.7 ms Radio PSR in 2009

Accretion disk in 2000-01 (but faint in X-rays)

A state transition must have occurred, even if unobserved

Archibald et al. 2009, Science

PSR J1023+0038: June 2013, a new state transition

PSR J1023+0038: June 2013, a new state transition

A third transitional pulsar: XSS J12270-4859

Sub-luminous (~ 10^{34} erg/s) in X-rays

X-ray variability

Low mass companion and disk

Gamma-ray bright

[De Martino+2010,2013; Saitou+2010; Hill+2011]

Detected as a Radio PSR Very faint in X-rays (~10³²) erg/s No disk

[Bassa+2014, Bogdanov+2014, Roy+ 2014]

The three states of millisecond pulsars

Sub-luminous disk state: X-ray pulsations

PSR J1023+0038 Archibald et al. 2015

XSS J12270-4859 - Papitto et al. 2015

Pulsed flux ~10 times larger than during radio pulsar state \rightarrow accretion powered pulsations

X-ray luminosity ${\sim}1000$ times lower than in accreting ms pulsars

Implication of X-ray pulsations

The mass accretion rate on the NS surface is 100 times smaller than the one required to keep the magnetosphere inside the corotation radius

$$\label{eq:mass_states} \begin{split} \left(dM/dt\right)_{\text{NS}} &\sim 10^{\text{-2}} \left(dM/dt\right)_{\text{disk}} \\ &> 95\% \text{ of the inflowing mass ejected?} \end{split}$$

Propeller outflows

3d MHD simulations of propeller ejection of matter

Lii, Romanova+ 2014 – for a disk terminated close to the corotation surface, part of the inflowing mass manages to accrete and part is launched in an outflow.

\rightarrow Accretion and outflows can coexist

Radio brightness similar to BHs

Deller + 2015, ApJ

A propeller model: the gamma-ray emission

 $\mathsf{Ecut} \sim \mathsf{few} \ \mathsf{GeV}$

- \rightarrow radio pulsar models, GeV electrons of magnetospheric origin
- \rightarrow propeller model, electrons accelerated at the turbulent disk-magnetospheric boundary

Accelerated electrons into a strongly magnetized (10⁶ G) and relatively small (~few tens of km) environment

→ synchrotron (up to MeV) → self-synchrotron Compton (up to GeV)

Good modelling for Rin $\sim 2~\text{Rco}$

Papitto & Torres 2015, ApJ Papitto, Torres, Li, 2014, MNRAS,

The three states of millisecond pulsars

Candidate transitional pulsars

Eclipsing radio pulsars [Fruchter+ 1988]

~50 known; bright gamma-ray sources Black widows (Mc < 0.1 Msun) Redbacks (Mc ~ 0.2-0.7 Msun)

The three transitional pulsars discovered so far are redbacks

Accreting millisecond pulsars

15 known [Wijnands & van der Klis 1998]

Weak X-ray transients (Lpeak $\sim 10^{36}$ erg/s)

A radio PSR turning on during quiescence (L~10³²⁻³³ erg/s)?

Reprocessed optical light [Burderi+2001, Campana+2002] Spin evolution [Hartman+2008, Patruno+2009, Papitto+2011] Orbital evolution [Di Salvo+ 2008, Patruno+2012]

...but no detection in radio, expect IGR J18245-2452 [Burgay+2003, Iacolina+2011, Xing+2012]

Does a radio pulsar turn on in quiescence?

Radio pulsar not detected, expect than for IGR J18245-2452 [Burgay+ 2003, Iacolina+ 2011] \rightarrow enshrouding by intervening matter?

A candidate gamma-ray counterpart for SAX J1808.4-3658 [Xing+ 2015, de Oña Wilhelmi, Papitto+ 2015]

Accurate search for gamma-ray pulsations did not yield to a detection

$$\label{eq:Lgamma} \begin{split} &L\gamma = &(3.5 {+}/{-}0.3) {\times} 10^{33} \text{ erg cm}^{-2} \\ &\to {\sim} 30\% \text{ of the spin down power} \end{split}$$

Evolutionary scenarios

Is the transitional phase common? Which evolutionary channels?

An intermediate spin distribution

Papitto, Torres, Rea, Tauris, 2014, A&A Tauris 2012, Science, 335, 561

- What drives variations of the mass in-flow rate? Tidal interactions? Mass accumulation?
- Outflows during accretion powered stage (radio/X-ray correlations)?
- Origin of the gamma-ray emission during the sub-luminous accretion disk stage (propeller origin?)
- Are all millisecond pulsars in close binary systems transitional?

- N. Rea, D. Torres, J. Li, E.De Oña Wilhelmi (ICE, CSIC-IEEC Barcelona),
- E. Bozzo, C. Ferrigno, L. Pavan (ISDC Genéve),
- L. Burderi, A. Riggio (Univ. of Cagliari), T. Di Salvo (Univ. of Palermo),
- S. Campana, P. D'Avanzo (INAF OA Brera), L. Stella (INAF OA Roma),
- P. Romano (INAF IASF Palermo),
- C. Pallanca (Univ. of Bologna), T. Tauris (Univ. of Bonn),
- J. Hessels (ASTRON, Univ. Amsterdam), S. Ransom (NRAO),
- P. Freire (MPIfR Bonn), M. Falanga (ISSI Bern, ISSI Beijing),
- I. H. Stairs, M. D. Filipovic, J. M. Sarkissian, M.H. Wieringa, G. F. Wong (ATNF),
- D. De Martino (INAF OA Napoli), T. M. Belloni (INAF OA Brera),
- M. Burgay, A. Possenti, A. Pellizzioni (INAF OA Cagliari)