

POLARBEAR Collaboration

UC Berkeley

Brian Barch Yuji Chinone Ari Cukierman Tijmen de Haan Josquin Errard Neil Goeckner-Wald John Groh **Grantland Hall Charles Hill** William Holzapfel Yasuto Hori Oliver Jeong Adrian Lee Mike Myers Chris Raum Paul Richards **Blake Sherwin** Ian Shirley Bryan Steinbach Aritoki Suzuki Nathan Whitehorn Oliver Zahn

Imperial College

Anne Ducout Stephen Feeney **Andrew Jaffe**

Chris Aleman Kam Arnold **Matt Atlas Darcy Barron Tucker Elleflot** George Fuller Logan Howe Jon Kaufman Kavon Kazemzadeh **Brian Keating David Leon Lindsay Lowry** Frederick Matsuda Martin Navaroli Hans Paar Gabriel Rebeiz Praween Siritanasak Nathan Stebor **Brandon Wilson Amit Yaday**

CU Boulder

Alex Zahn

Nils Halverson Greg Jaehnig **David Schenck**

Yoshiki Akiba Takaho Hamada Masaya Hasegawa Kaori Hattori Masashi Hazumi Yuki Inoue Haruki Nishino Yuuko Segawa Jun-ichi Suzuki Osamu Tajima Satoru Takakura Sayuri Takatori

Laboratoire Astroparticule & Cosmologie

Takayuki Tomaru

Maude Le Jeune Julien Peloton Davide Poletti Radek Stompor

Argonne NL **Amy Bender**

U. Melbourne

McGill University

Matt Dobbs Adam Gilbert Josh Montgomery **Graeme Smecher**

Dalhousie

Scott Chapman Colin Ross Kaja Rotermund Alexei Tikhomirov

mmi

PMU

Lawrence Berkeley NL

Julian Borrill Reijo Keskitalo Theodore Kisner Akito Kusaka Eric Linder

Kavli IPMU

Takuro Fujino Fumiya Irie Nobuhiko Katayama Kuniyoshi Mizukami Tetsu Yamashita

SISSA

Carlo Baccigalupi Giulio Fabbian Giuseppe Puglisi

JAXA

Tomotake Matsumura

UC Irvine

Chang Feng

for Fusion Science Suguru Takada

Cardiff University Peter Ade

NASA Goddard

Princeton Zigmund Kermish

Católica (PUC) David Boettger

Rolando Dunner

NASA

→ B-modes science and measurements → The POLARBEAR experiment → First season's results ◆ POLARBEAR 2 and Simons array **Davide Poletti - POLARBEAR collaboration**

The Cosmic Microwave Background

The CMB:

- picture of the 380,000 years old universe
- information on the inflationary phase

Temperature anisotropies:

- ACDM confirmed
- Cosmological information exploited

Planck Collaboration

The CMB polarization

Polarization field

⇒ Q, U Stokes parameters

⇒ Decomposed in E and B modes

Primordial B-modes

Perturbations at the last scattering surface:

- Scalar ⇒ E only (to linear order)
- Tensor ⇒ E and B

Tensor perturbation after inflation:

- r
 Energy scale of inflation (~10¹⁶ GeV for r~0.1)
- n_t
 Consistency relation (r = 8 n_t)

Lensing B-Modes

$$\phi(\hat{\mathbf{n}}) = -2 \int dD \frac{D_s - D}{DD_s} \Psi(D\hat{\mathbf{n}}, D)$$

$$\mathbf{d} = \nabla \phi$$

$$\delta E(\mathbf{l}; \mathbf{l'}) = -[E(\mathbf{l'})\cos 2\varphi_{\mathbf{l'l}} - B(\mathbf{l'})\sin 2\varphi_{\mathbf{l'l}}][\mathbf{l} \cdot (\mathbf{l-l'})]\phi(\mathbf{l-l'})$$

$$\delta B(\mathbf{l}; \mathbf{l}') = -[E(\mathbf{l}')\sin 2\varphi_{\mathbf{l}'\mathbf{l}} + B(\mathbf{l}')\cos 2\varphi_{\mathbf{l}'\mathbf{l}}][\mathbf{l} \cdot (\mathbf{l} - \mathbf{l}')]\phi(\mathbf{l} - \mathbf{l}')$$

Lensing B-Modes

$$\phi(\hat{\mathbf{n}}) = -2 \int dD \frac{D_s - D}{DD_s} \Psi(D\hat{\mathbf{n}}, D)$$

$$\mathbf{d} = \nabla \phi$$

$$\delta E(\mathbf{l}; \mathbf{l'}) = -[E(\mathbf{l'})\cos 2\varphi_{\mathbf{l'l}} - B(\mathbf{l'})\sin 2\varphi_{\mathbf{l'l}}][\mathbf{l} \cdot (\mathbf{l} - \mathbf{l'})]\phi(\mathbf{l} - \mathbf{l'})$$

$$\delta B(\mathbf{l}; \mathbf{l'}) = -[E(\mathbf{l'})\sin 2\varphi_{\mathbf{l'l}} + B(\mathbf{l'})\cos 2\varphi_{\mathbf{l'l}}][\mathbf{l} \cdot (\mathbf{l-l'})]\phi(\mathbf{l-l'})$$

POLARBEAR experiment

- CMB B-modes dedicated experiment
- Atacama desert (~5200 m altitude)
 - Access to 80% of the sky
 - Dry atmosphere
- Targeting both primordial and lensing B-modes

FIRST SEASON

- Period: May 2012 to June 2013
- Target:
 deep integration of
 3 patches 5 deg x 5 deg

Instrumental design

1274 bolometers @ 150 GHz Cooled to 250 mK

Hex Module

 $\mathbf{t}(t) = g_{top} \left[\mathbf{I}(\mathbf{\hat{n}}(t)) + \mathbf{Q}(\mathbf{\hat{n}}(t)) \cos(2\psi(t)) + \mathbf{U}(\mathbf{\hat{n}}(t)) \sin(2\psi(t)) \right]$

 $\mathbf{d}^{\mathbf{b}}(\mathbf{t}) = g_{\mathbf{bot}} \left[\mathbf{I}(\hat{\mathbf{n}}(\mathbf{t})) - \mathbf{Q}(\hat{\mathbf{n}}(\mathbf{t})) \cos(2\psi(\mathbf{t})) - \mathbf{U}(\hat{\mathbf{n}}(\mathbf{t})) \sin(2\psi(\mathbf{t})) \right]$

Instrument characterization

- Ground based and astrophysical calibrators
 - Beam: Jupiter
 - Calibration of the detectors: Saturn
 - ▶ Polarization angle: Tau A
- 3.5 arcmin beam FWHM
- Ellipticity < 5%, differential ellipticity 1%
- ullet Array NET $~23~\mu K\sqrt{s}$

Map and power spectrum

- Filtered mapmaking: $\hat{\mathbf{s}} = (\mathbf{A}^{\top} \mathbf{N}^{-1} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{F} \mathbf{d}$
- Very fast
- Flat-sky MASTER pseudo power spectrum estimation with daily cross-spectra

- Unbiased mapmaking: $\hat{\mathbf{s}} = (\mathbf{A}^\intercal \mathbf{F} \mathbf{A})^{-1} \mathbf{A}^\intercal \mathbf{F} \mathbf{d}$
- Fast, iterative estimator

- Accurate, explicit estimator
- Curved-sky, pure, pseudo power spectrum estimator

→ B-modes science and measurements → The POLARBEAR experiment First season's results ◆ POLARBEAR 2 and Simons array

Results: lensing from polarization alone

Phys. Rev. Lett. 112, 131302 (2014) Editors' Suggestion

Results: cross-correlation with CIB

Polarization Measurement

Cosmic Infrared Background

Estimator of κ from POLARBEAR \mathbf{X} polarization maps

CIB map from Hershel

Phys. Rev. Lett. 112, 131302 (2014) Editors' Suggestion

Results: BB spectrum measurement

First direct evidence of lensing B-modes

Astrophysical J. 794, 171 (2014)

97.5% c.l. B-modes

evidence

Amplitude of lensing compared to ΛCDM

$$A_{BB} = 1.12 \pm 0.61(\text{stat})^{+0.04}_{-0.10}(\text{sys}) \pm 0.07(\text{multi})$$

- Negligible contamination from astrophysical foregrounds
- Negligible contamination from systematic effects

Results: cosmic birefringence / primordial magnetic fields

Polarization Estimation Measurement α field

Constraint on cosmic birefringence and primordial magnetic fields < 93 nG (95% c.l.)

Phys. Rev. D 92, 123509 (2015) Editors' Suggestion

Control of the systematics

- Blind policy: assess data selection and quality without looking at the scientific products
- Null-test (Jackknife test):
 - temporal
 - scan properties (azimuthal direction, elevation)
 - weather
 - calibration properties
 - ◆ detector selection
 - → bright sources distance.
- Compatible with uniform distribution
- No significant outlier

(Probability to exceed)

Control of the systematics

- Systematics pipeline: systematic injection and propagation through the whole science pipeline
- ⇒ Residual systematics are negligible

Most notably:

Boresight and differential pointing

Differential beam size

Polarization angle

Differential beam ellipticity

HWP dependent gain

Situation after season I

- Season I successfully probed small scales
- Systematics: under control
- Sensitivity: close to lensing B-modes level
 - Analysis of the season II ongoing
- BICEP2 and Planck: foregrounds dominate large scales

→ B-modes science and measurements → The POLARBEAR experiment → First season's results + POLARBEAR 2 and Simons Array

The future: POLARBEAR 2 and Simons array

2016: POLARBEAR 2 new telescope and receiver

- > 7,588 detectors
- Multichroic pixels (95/150 GHz)

2017: Simons Array new telescopes, 2 new PB2-like receivers

- ▶ 22,764 detectors
- ▶ 95/150/220 GHz channel

Simons Array: sensitivity and foreground rejection

Simons Array 90/150/220 GHz combined with Planck and C-Bass

$$\sigma(r = 0.1) = \begin{matrix} 6 \cdot 10^{-3} \\ (4 \cdot 10^{-3}) \end{matrix}$$

$$\sigma(\Sigma m_{\nu}) = 40 \text{ meV} \\ (19 \text{ meV})$$

Combined with DESI BAO

r < 0.07 BK VI (2015)

 $\Sigma m_v < 0.15 \text{ eV}$

Palanque-Delabrouille et al (2015)

*Dust level: Planck Intermediate XXX

Constrain inflation, neutrino mass hierarchy, primordial magnetic fields and more...

Summary

- B-mode era has begun and accuracy is rapidly increasing
- POLARBEAR: probing CMB B-Modes from the Atacama desert
- SEASON I: first measurement of lensing B-modes using the CMB alone, validated with the CIB cross-correlation

- SEASON II: Analysis ongoing.
- FUTURE: probing both lensing and primordial B-modes with POLARBEAR 2 and Simons Array. High sensitivity and foreground rejection with multi-frequency coverage.

