The Nature of Trapping Horizons in Collapses Forming Black Holes

Ilia Musco

(CNRS, Observatoire de Paris/Meudon - LUTH)

in collaboration with *Alexis Helou* (Paris/Munich), *John Miller* (Oxford)

TEXAS 2015 (Geneva), 17 December 2015

Outline

- Introduction: *Misner-Sharp & perfect fluids*
- Causal horizons in spherical symmetry: R = 2M
 - black hole horizons (ingoing/outgoing)
 - cosmological horizon
- Causal nature of the horizons
- Results of simulations of classical gravitational collapse
- Conclusions

Background model

• The most general **spherical symmetric** form of the metric, to describe a deviation from the uniform background, can be written as,

$$ds^{2} = -a^{2} dt^{2} + b^{2} dr^{2} + R^{2} d\Omega^{2}$$

- This defines *a*, *b*, and *R* being functions of the comoving coordinate *r* the often called **cosmic time** *t* and involves a choice of the **time slicing** to keep the metric diagonal (gauge choice). The radius *R* is the **circumferential radial coordinate**.
- The unperturbed solution, describing an expanding homogeneous universe, is given by the FRW metric: $K = \pm 1$, θ is the curvature parameter, $\tilde{a}(t)$ is the scale factor, and $R = \tilde{a}(t)r$ is the circumferential radial coordinate.

$$ds^{2} = -dt^{2} + \tilde{a}(t)\left[\frac{dr^{2}}{1 - Kr^{2}} + r^{2}d\Omega^{2}\right]$$

• This slicing is very useful to impose initial conditions. The observer is comoving with the fluid (Preferred Slicing).

$$G_{\mu\nu} = 8\pi T_{\mu\nu}$$
 $T_{\mu\nu} = (e+p)u_{\mu}u_{\nu} - pg_{\mu\nu}$

COSMIC TIME

$$D_{t} \equiv \frac{1}{a} \left(\frac{\partial}{\partial t} \right) \qquad D_{r} \equiv \frac{1}{b} \left(\frac{\partial}{\partial r} \right)$$
$$U \equiv D_{t}R \qquad \Gamma \equiv D_{r}R$$
$$D_{t}U = -\left[\frac{\Gamma}{(e+p)} D_{r}p + \frac{M}{R^{2}} + 4\pi Rp \right]$$
$$D_{t}\rho = -\frac{\rho}{\Gamma R^{2}} D_{r}(R^{2}U)$$
$$D_{t}e = \frac{e+p}{\rho} D_{t}\rho$$
$$D_{t}M = -4\pi R^{2}pU$$
$$D_{r}a = -\frac{a}{e+p} D_{r}p$$
$$D_{r}M = 4\pi R^{2}\Gamma e$$
$$\Gamma^{2} = 1 + U^{2} - \frac{2M}{R}$$

$$ds^{2} = -a^{2} dt^{2} + b^{2} dr^{2} + R^{2} d\Omega^{2}$$

- Proper time / space derivative
- 4-velocity & Lorentz factor
- Euler equation
- Continuity equation
- Mass conservation

 $dM = aUdt + b\Gamma dr$

- Lapse equation / pressure gradients
- Constraint equation

Equation of State

- Barotropic fluid (no rest mass density): p = we with $w \in [0, 1]$
 - radiation dominated era: w=1/3 RADIATION ($\gamma=4/3$)
 - matter dominated era: w = 0 DUST $(\gamma = 1)$
- Polytropic fluid: $p = K(s)\rho^{\gamma}$ $(\gamma = 5/3, 4/3, 2)$
 - If the fluid is adiabatic (no entropy change): K(s) = K (constant)

Calculation of Γ

• For a general perfect fluid, the G_{00} and G_{11} components of the Einstein field equations are

$$(G_0^0) \qquad 4\pi R^2 e R_r = (R + RU^2 - R\Gamma^2)_r / 2$$

$$(G_1^1) \qquad 4\pi R^2 a p U = -(R + R U^2 - R \Gamma^2)_t / 2$$

• It is convenient to define $M = (R + RU^2 - R\Gamma^2)/2$ to write

The last is a **constraint equation** with M being the mass inside radius R. The second one describes adiabatic expansion or contraction of the fluid.

Trapping Horizons (Hayward)

A trapping horizon is the closure of a three-surface H foliated by marginally trapped surfaces ($\theta_v = 0$) on which $\theta_{nv} \neq 0$ and where the Lie derivative $\mathcal{L}_{nv}\theta_v \neq 0$.

- outer horizon if $\mathcal{L}_{nv}\theta_v < 0$.
- inner horizon if $\mathcal{L}_{nv}\theta_v > 0$.
- future horizon if $\theta_{nv} < 0$: $\theta_{-} < 0$ and $\theta_{+} = 0$ (Black Holes)
- past horizon if $\theta_{nv} > 0$: $\theta_+ > 0$ and $\theta_- = 0$. (Expanding Universe)

Trapping horizon condition

The Misner-Sharp Mass: $M = \frac{R}{2} \left(1 - \nabla^a R \nabla_a R \right)$

Expansion of **ingoing/outgoing** null-rays:

$$k^{a}, l^{a} = (1, \pm \frac{a}{b}, 0, 0)$$
$$\theta_{out} = h^{cd} \nabla_{c} k_{d} = \frac{2a}{R} (U + \Gamma)$$
$$\theta_{in} = h^{cd} \nabla_{c} l_{d} = \frac{2a}{R} (U - \Gamma)$$

For changes in R along a worldline:

$$dR = \left(\frac{\partial R}{\partial t} \pm \frac{a}{b}\frac{\partial R}{\partial r}\right)dt$$

$$\theta_{\pm} = \frac{2}{R} (U \pm \Gamma) = \frac{2}{aR} \left. \frac{dR}{dt} \right|_{\pm} = 0 \quad \Rightarrow \quad \Gamma^2 = U^2$$

Trapping Horizons within a moving medium

• A black hole **apparent horizon** (event horizon in the static case) is the asymptotic location of the **outermost trapped surface** for outgoing light-rays whereas the **cosmological horizon** is the **innermost trapped surface** for incoming light rays.

• Black Hole horizons :
$$\left(\frac{dR}{dt}\right)_{\text{out}} = a(U+\Gamma) = 0 \rightarrow \Gamma = -U$$

• Cosmological horizon: $\left(\frac{dR}{dt}\right)_{in} = a(U - \Gamma) = 0 \rightarrow \Gamma = U$ $\downarrow \downarrow$ $\Gamma^2 = U^2$ inserted into $\Gamma^2 = 1 + U^2 - \frac{2M}{R}$ $\downarrow \downarrow$

The horizon condition is independent of the slicing and holds also within a non-vacuum moving medium

R = 2M

Miller & Musco - arXiv:1412.8660

Causal Nature

$$\mathcal{L}_{out} = \mathcal{L}_k = k^a \partial_a = (\partial_t + \frac{a}{b} \partial_r) = a \left(D_t + D_r \right)$$
$$\mathcal{L}_{in} = \mathcal{L}_l = l^a \partial_a = \left(\partial_t - \frac{a}{b} \partial_r \right) = a \left(D_t - D_r \right)$$

Causal Nature of BH horizons:

$$\alpha = \frac{\mathcal{L}_{out}\theta_{out}}{\mathcal{L}_{in}\theta_{out}}$$

Causal Nature of cosmological horizon:

$$\alpha = \frac{\mathcal{L}_{in}\theta_{in}}{\mathcal{L}_{out}\theta_{in}}$$

> 0 : space-like

$$= 0 / \infty$$
: null

< 0 : time-like

$$\alpha = \frac{(D_t U \pm D_t \Gamma) \pm (D_r U \pm D_r \Gamma)}{(D_t U \pm D_t \Gamma) \mp (D_r U \pm D_r \Gamma)}$$

$$\alpha = \frac{4\pi R_H^2(e+p)}{1 - 4\pi R_H^2(e-p)}$$

$$R_H = 2M_H$$

$$\frac{1}{a}\frac{dR}{dt} = \frac{dR}{d\tau} = U + \Gamma v + d\left(\frac{R}{2M}\right)_{H} = 0$$

3-velocity of the horizon with respect the matter:

 $\left| v_{H} = \pm \frac{1 + 8\pi R_{H}^{2} p}{1 - 8\pi R_{H}^{2} e} \right| \Rightarrow \left| \alpha = \frac{v_{H} - 1}{v_{H} + 1} \right|$

$$v_H \equiv \left(\frac{b}{a}\frac{dr}{dt}\right)_H$$

$$|v_H| > 1$$
: space-like

$$|v_H| = 1$$
: null

 $|v_H| < 1$: time-like

Schwerschild BH / Oppenheimer-Snyder collapse

May & White (1966): Causal Nature

$$p = K \rho^{\gamma}$$
 ($\gamma = 4/3$, HOM I.C.)

 $p = K \rho^{\gamma}$ ($\gamma = 5/3, \text{TOV I.C.}$)

Causal Nature Summary

Conclusions & Future perpectives

- With the Misner-Sharp equations (cosmic time slicing) we have studied the causal nature of trapping horizons appearing in gravitational collapse for polytropic stars forming black hole using a spherically symmetric Lagrangian numerical code.
- Within the classical regime of GR we have observed <u>space-like (outer) outgoing</u> <u>horizon</u> and <u>space-like/time-like (outer/inner) ingoing horizon</u> depending on the choice of the equations of state and initial conditions.
- The conditions of horizon formation and disappearance are independent of the initial conditions:

$$\alpha = 1, v_H = \pm \infty$$

• The formalism developed seems to show the possibility of incorporating quantum effects within the classical formulation of the GR-hydro equations modifying the equation of state according to quantum gravity (*Rovelli's Talk*).

Can we get a bounce instead of a singularity?

Black Hole Thermodynamics

Hayward-Kodama surface gravity:
$$\kappa = \frac{1}{2\sqrt{-\gamma}}\partial_i \left[\sqrt{-\gamma}\gamma^{ij}\nabla_j R\right]$$

Using Misner-Sharp equations: $\kappa = \frac{1}{2R} \left[\frac{2M}{R} - 4\pi R^2 (e-p) \right]$

$$R = 2M \implies \kappa = \frac{1}{4M_H} - 4\pi M_H (e - p)$$
$$\downarrow$$

$$dM_H = \frac{\kappa}{8\pi} dA_H + \frac{(e-p)}{2} dV_H$$

$$\alpha = 2\pi R_H \frac{e+p}{\kappa}$$

Table 2: casual nature of R_H for BHs				
e, p, R_H	v_H	κ	α	Type
		outgoing horizon		
(e+p) > 0	$v_H > 1$	$\kappa > 0$	$\alpha > 0$	space-like
(e+p) = 0	$v_H = 1$	$\kappa > 0$	$\alpha = 0$	null
(e+p) < 0	$0 < v_H < 1$	$\kappa > 0$	$\alpha < 0$	$\operatorname{time-like}$
		static horizon		
$8\pi R_H^2 p = -1$	$v_H = 0$	$\kappa > 0$	$\alpha = -1$	time-like
		ingoing horizon		
(e+p) > 0	$-1 < v_H < 0$	$\kappa < 0$	$\alpha < 0$	$\operatorname{time-like}$
$4\pi R_H^2(e-p) = 1$	$v_H = -1$	$\kappa = 0$	$\alpha = -\infty$	null
(e+p) > 0	$v_H < -1$	$\kappa > 0$	$\alpha > 0$	space-like

$$v_H = \frac{1 + 8\pi R_H^2 p}{1 - 8\pi R_H^2 e} = \frac{\kappa + 2\pi R_H (e+p)}{\kappa - 2\pi R_H (e+p)} = \frac{1 + \alpha}{1 - \alpha}$$

$$\alpha = \frac{4\pi R_H^2(e+p)}{1 - 4\pi R_H^2(e-p)} = 2\pi R_H \frac{e+p}{\kappa} = \frac{v_H - 1}{v_H + 1}$$