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Background model
• The most general spherical symmetric form of the metric, to describe a 

deviation from the uniform background, can be written as, 

• This defines a, b, and R being functions of the comoving coordinate r the 
often called cosmic time t and involves a choice of the time slicing to keep 
the metric diagonal (gauge choice). The radius R is the circumferential 
radial coordinate.

• The unperturbed solution, describing an expanding homogeneous universe, 
is given by the FRW metric: K = ±1, 0 is the curvature parameter,         is the 
scale factor, and  R  =        r  is the circumferential radial coordinate. 

• This slicing is very useful to impose initial conditions. The observer is 
comoving with the fluid (Preferred Slicing).

ds2 = �a2 dt2 + b2 dr2 + R2d⌦2
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• Proper time / space derivative

• 4-velocity & Lorentz factor

• Euler equation

• Continuity equation

• Mass conservation

• Lapse equation / pressure gradients

• Constraint equation

dM = aUdt+ b�dr



Equation of State

• Barotropic fluid (no rest mass density):                         with 

- radiation dominated era:

- matter dominated era:                  

• Polytropic fluid:                               

- If the fluid is adiabatic (no entropy change):                        (constant)

rest mass density

specific internal energy (velocity dispersion)

w = 1/3

adiabatic index - particle degree of freedom

w = 0

p = we w 2 [0, 1]

p = K(s)⇢�

K(s) = K

RADIATION

DUST

energy density: pressure:e = ⇢(1 + ✏)

(� = 4/3)

p = (� � 1)⇢✏

(� = 1)

(� = 5/3, 4/3, 2)



• For a general perfect fluid, the G00 and G11 components of the Einstein field 
equations are                                                                    

                                        

• It is convenient to define                                                              to write  

• The last is a constraint equation with M being the mass inside radius R. The  
second one describes adiabatic expansion or contraction of the fluid. 
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normal surface marginal surface (anti)trapped surface

Trapping Horizons (Hayward)
A trapping horizon is the closure of a three-surface H foliated by marginally
trapped surfaces (✓v = 0) on which ✓nv 6= 0 and where the Lie derivative
Lnv✓v 6= 0.

• outer horizon if Lnv✓v < 0.

• inner horizon if Lnv✓v > 0.

• future horizon if ✓nv < 0: ✓� < 0 and ✓+ = 0 (Black Holes)

• past horizon if ✓nv > 0: ✓+ > 0 and ✓� = 0. (Expanding Universe)



Trapping horizon condition

The Misner-Sharp Mass:

For changes in R along a worldline:

Expansion of  ingoing/outgoing null-rays:
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• A black hole apparent horizon (event horizon in the static case) is the 
asymptotic location of the outermost trapped surface for outgoing light-rays 
whereas the cosmological horizon is the innermost trapped surface for 
incoming light rays.

• Black Hole horizons :

• Cosmological horizon :                                 

•                                       inserted into

Trapping Horizons within a moving medium
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The horizon condition is independent of the 
slicing and holds also within a non-vacuum 
moving medium

Miller & Musco - arXiv:1412.8660
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Causal Nature of BH horizons:

Causal Nature of cosmological  horizon:

↵ =
(DtU ±Dt�)± (DrU ±Dr�)

(DtU ±Dt�)⌥ (DrU ±Dr�)

> 0  :  space-like

= 0 /     :  null

< 0  :  time-like

1

Causal Nature
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Schwerschild BH  /  Oppenheimer-Snyder collapse
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May & White (1966) 

Homogenous initial density 
 

p = K⇢� (� = 5/3,K = 0.05)



May & White (1966): Causal Nature 
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p = K⇢� (� = 5/3,TOV I.C.)
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Causal Nature Summary 
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Conclusions & Future perpectives
• With the Misner-Sharp equations (cosmic time slicing) we have studied the causal 

nature of trapping horizons appearing in gravitational collapse for polytropic stars 
forming black hole using a spherically symmetric Lagrangian numerical code. 

• Within the classical regime of GR we have observed space-like (outer) outgoing 
horizon and space-like/time-like (outer/inner) ingoing horizon depending on 
the choice of the equations of state and initial conditions. 

• The conditions of horizon formation and disappearance are independent of the 
initial conditions: 

• The formalism developed seems to show the possibility of incorporating quantum 
effects within the classical formulation of the GR-hydro equations modifying the 
equation of state according to quantum gravity (Rovelli's Talk).  

Can we get a bounce instead of a singularity? 

↵ = 1 , vH = ±1
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Black Hole Thermodynamics
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Hayward-Kodama surface gravity:
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– = (Dt + Dr)(U + �)
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H(e + p)
1 ≠ 4fiR2
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We have now all the machinery for a complete description and understanding
of the nature of the inner and outer horizon. This is summarized in the
following table.

Table 2: casual nature of RH for BHs
e, p, RH vH Ÿ – Type

outgoing horizon
(e + p) > 0 vH > 1 Ÿ > 0 – > 0 space-like
(e + p) = 0 vH = 1 Ÿ > 0 – = 0 null
(e + p) < 0 0 < vH < 1 Ÿ > 0 – < 0 time-like

static horizon
8fiR2

Hp = ≠1 vH = 0 Ÿ > 0 – = ≠1 time-like
ingoing horizon

(e + p) > 0 ≠1 < vH < 0 Ÿ < 0 – < 0 time-like
4fiR2

H(e ≠ p) = 1 vH = ≠1 Ÿ = 0 – = ≠Œ null
(e + p) > 0 vH < ≠1 Ÿ > 0 – > 0 space-like

Inserting some description of the table...

Comments & Further Investigations:
• It is interesting to note that

Ÿ = 0 ∆ (e ≠ p) = 1
16fiM2

H

= 1
AH

There is any meaning in this?

• Foliation in relation of spacelike/timelike outer/inner horizons (see pic-
tures of simulations).

• Looking at the results of the simulations the final nature of the moving
inward horizon seems to be the same of the cosmological horizon, related to
sti�ness. In the limit, the two horizon have really the same meaning (con-
tracting/expanding universe).
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