A direct measurement of tomographic lensing power spectra from CFHTLenS (in press at MNRAS; arXiv1509.04071) Fabian Köhlinger Collaborators: M. Viola, W. Valkenburg, B. Joachimi, H. Hoekstra, K. Kuijken **Texas Symposium 2015, Geneva** **17 December 2015** # I. Introduction ### Cosmological model ## Lensing statistic: shear-shear (a.k.a. cosmic shear) ### Weak lensing: Future 17 gals/arcmin² 6 gals/arcmin² - $z_{\rm m} = 0.75$ - $z_{m} = 0.60$ #### completed ongoing 9 gals/arcmin² $z_{\rm m} = 0.70$ 20 gals/arcmin² • 8 gals/arcmin² - $z_{\rm m} = 1.00$ - $z_{\rm m} = 0.65$ - 30 gals/arcmin² - $z_{\rm m} = 0.90$ - 31 gals/arcmin² - $Z_{\rm m} = 1.00$ > 2020 ### Weak Lensing: Challenges 1) Accurate photometric redshifts #### 2) Shape noise: Bridle et al. (2009) "The bigger (deeper) the survey the smaller the uncertainties!" 3) Blending (!) ### II. Cosmic Shear ### Lensing of LSS: #### **Theory:** $$C_{\mu\nu}^{\rm EE}(\ell) = \frac{9\Omega_{\rm m}^2 H_0^4}{4c^4} \int_0^{\chi_{\rm H}} \mathrm{d}\chi \underbrace{\frac{g_{\mu}(\chi)g_{\nu}(\chi)}{a^2(\chi)}} P_{\delta}\left(k = \frac{\ell}{f_{\rm K}(\chi)};\chi\right)$$ "geometry" "physics" #### measurements: **correlation functions** \Longrightarrow power spectra ### **Baryons & neutrinos:** integration over lensing kernel - AGN feedback from OWLS after Harnois-Déraps et al. (2015) - 3 degenerate, massive neutrinos with $\Sigma m_v = 0.18$ eV ### The CFHTLenS case: \sim 154 deg² (\sim 115 deg²) $n_{gal} = 17 \text{ gals/arcmin}^2$ two redshift slices: z_1 : $0.50 < z \le 0.85$ z_2 : 0.85 < $z \le 1.30$ minimize intrinsic alignments !!! PUBLIC data !!! Erben et al. (2012) ### Results: Multipole Space quadratic estimator method (Hu & White 2001) expanded to include photometric redshift bins WL power spectra from CFHTLenS (W1, W2, W3 & W4 combined with inverse variance weights) Which model describes the data the best? ### **Evidences:** likelihood analysis performed with *Monte Python* (Audren et al. 2012) and *Multinest* (Feroz et al. 2008, 2009, 2013) | Model | $\ln \mathcal{Z}$ | $2 \ln K \ (K \equiv \mathcal{Z}_i / \mathcal{Z}_{\Lambda \mathrm{CDM}})$ | |--|-------------------|---| | $\Lambda \mathrm{CDM}$ | -40.96 ± 0.06 | 0 | | $\Lambda CDMa$ | -41.07 ± 0.06 | -0.22 | | $\Lambda \text{CDM} + \nu$ | -41.63 ± 0.07 | -1.34 | | $\Lambda CDMa + \nu$ | -41.83 ± 0.07 | -1.74 | | Λ CDM + A_{bary} | -41.66 ± 0.06 | -1.40 | | $\Lambda \text{CDM} + \nu + A_{\text{bary}}$ | -42.48 ± 0.07 | -3.04 | | $\Lambda CDM + \Delta z_{\mu}$ | -40.75 ± 0.07 | 0.42 | | $\Lambda \text{CDM} + \text{all}$ | -42.19 ± 0.07 | -2.46 | FK+ (in press) # III. Conclusions A direct extraction of the lensing power spectrum is a "cleaner" way to compare data with theory. The power spectrum results show overall consistency with previous results based on correlation-functions. Ongoing and future lensing surveys have the potential to constrain distinct features in multipole space such as left by massive neutrinos or baryon feedback with high precision.