THE 3.5 KEV CANDIDATE DARK MATTER DECAY SIGNAL - CURRENT STATUS AND NEAR-FUTURE PROSPECTS

Jeroen Franse

Lorentz Institute & Leiden Observatory

Texas Symposium, Geneva, 17 December 2015

With Alexey Boyarsky, Oleg Ruchayskiy, Dmytro lakubovskyi, Esra Bulbul

DECAYING DARK MATTER

2/19

WIMPS

- Interaction strength at weak scale
- Correct Ω_{DM} for masses
 Gev TeV
- Would have short lifetime
- Made stable with new physics

SUPERWIMPS

- Interaction strength weaker-than-weak
- Correct Ω_{DM} for masses of order keV
- Lifetime longer than age of universe
- Allowed to be decaying DM

STERILE NEUTRINOS IN X-RAYS

INTRODUCTION

TARGET SOURCES

Good targets are dark matter dominated. Specifically, sources with high expected decay signal strength

signal \propto DM mass in FoV / distance²

Detection at \sim 3.55 keV in Andromeda (M31) 💥 🖁

Boyarsky et al. 2014a [1402.4119]

DETECTIONS OF THE UNIDENTIFIED 3.5 KEV LINE

- Siterreta Little

 4.4σ

6/19

BOYARSKY ET AL. 2014A [1402.4119]

M31 galaxy XMM-Newton, center & outskirts Perseus cluster XMM-Newton, outskirts only

BULBUL ET AL. 2014 [1402.2301]

73 clustors	XMM-Newton (MOS & PN),	50 8 10
75 Clusters	centers only, up to $z = 0.4$	J 0 Q 4 0
Perseus cluster	Chandra, center only	3.5 σ

Estimated global significance $\sim 6.6\sigma$

INSTRUMENTAL ORIGIN?

7/19

Instrumental origin unlikely

- 1. Detected in 5 different detectors
 - XMM-Newton MOS and PN detectors
 - Chandra ACIS-S, ACIS-I
 - Suzaku XIS
- 2. Line redshifts correctly with sources
 - Clusters stacked in object restframe (Bulbul et al. 2014)
 - \blacksquare Line in Perseus redshifted correctly at $\sim 2\sigma$
- 3. Not detected in blank sky dataset
 - 16 Msec with XMM
 - ~8 Msec with Suzaku (Sekiya et al. 2015 [1504.02826])

LINE ORIGIN

ATOMIC LINE?

Unlikely: can not explain consistently all observations

M31 line is stronger than other atomic emission clusters need anomalous line ratios of a factor $\sim 10-20$

DARK MATTER DECAY?

LINE ORIGIN

The line flux should be proportional to mass / distance²

M31 surface brightness profile

JEROEN FRANSE | LORENTZ INSTITUTE & LEIDEN OBSERVATORY | TEXAS SYMPOSIUM, GENEVA, 17 DECEMBER 2015

Radius [deg]

DARK MATTER DECAY?

LINE ORIGIN

The line flux should be proportional to mass / distance²

DARK MATTER DECAY?

LINE ORIGIN

The line flux should be proportional to mass / distance²

Expect large signal from GC \rightarrow "easy" cross-check

Boyarsky et al. 2014b [1408.4388]

POSSIBLE ALTERNATIVE: CHARGE-EXCHANGE

GU, KAASTRA, ET AL. 2015 [1511.06557]

Colliding cold gas and hot gas can emit lines through *charge-exchange*.

At **3.48** keV, possible S XVI CX-line.

Depends on *amount* of cold gas and *velocity*.

POSSIBLE ALTERNATIVE: CHARGE-EXCHANGE

GU, KAASTRA, ET AL. 2015 [1511.06557]

Difficult to predict, but may be plausible in Perseus.

Not expected in *dSph's*.

Astro-H will be able to resolve line broadening.

MORE PERSEUS WITH SUZAKU (SOON)

NEW & FUTURE WORK

Preliminary 1 Ms with Suzaku, 8σ detection in the center

Franse, Bulbul et al. (in prep)

NEW & FUTURE WORK

MORE PERSEUS WITH SUZAKU (SOON)

Preliminary No detection in outskirts with Suzaku

Franse, Bulbul et al. (in prep)

We have been **awarded 1.4 Ms** of XMM observations of the Draco dwarf galaxy this year

- Highest expected signal of all dwarf galaxies (Geringer-Sameth+ 2014, Lovell+ 2014)
- Very gas-poor (do not expect any atomic lines)
- We will be able to confirm or deny the DM origin of the 3.5 keV line in early 2016.

NEW & FUTURE WORK

DRACO BY PROFUMO & JELTEMA

Full 1.6 Ms analysed by Profumo & Jeltema [1512.01239]

NEW & FUTURE WORK

FUTURE: ASTRO-H MICRO-CALORIMETER

JEROEN FRANSE | LORENTZ INSTITUTE & LEIDEN OBSERVATORY | TEXAS SYMPOSIUM, GENEVA, 17 DECEMBER 2015 1

SUMMARY

ANDERSON, CHURAZOV & BREGMAN [1408.4115]

PARAMETER SPACE

