RAPID VARIABILITY AS A
PROBE OF WARPED
SPACE-TIME AROUND
BLACK HOLES

MAGNUS AXELSSON
TOKYO METROPOLITAN UNIVERSITY

With: Chris Done (Durham University) and Linnea Hjalmarsdotter (IMoscow State University)



Q.
7
O

\ ) lllllll ) ) lllllll ] ) Illllll ) ] Illllll L) L] lIllllI
o :\. Comptonisation
- F ‘ 3
"
=
cH
X
>
&~ F
()
=]
3]
‘-! [] Ll [ [ [ IIIII [] [ IIIIIII [ [ ] [] IIII
< 1 10 100 10*
Energy (keV)
Soft X-rays Comptonized Soft X-rays Comptonized
from disc hard X-rays from disc hard X-rays

Compton reflected X-rays

’\’\E\ .
\ Cool outer disc

Black hole

Compton reflected X-rays
@

Cool disc Active regions Hot inner flow

\ . A\
. ]

Black hole
Radio jet

Higher mass accretion Low mass accretion
(soft state) (hard state)



10

1

Energy x Flux

0.1

0.01

||I 1 1 111 |||I 1 1 111 |||I 1 1 1 1111
1 10 100 1000
Energy (keV)

Done et al. (2007)

Even 1n “classic” hard
state, there are likely
several spectral
components.
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NOT SO SIMPLE...

Many different
spectral states
and corresponding
geometries
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probability density
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Uttley & McHardy (2001) rms = sqrt [ (1/N) > -, y (flux; - mean)?]
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Flux distribution is lognormal Linear rms-flux relation

Cannot get this from shot-noise or additive
process (sum of independent regions)
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Origin of broad band varability

Accretion rate fluctuations at various disk radii

\_ _/

Fluctuations start at large radu - soft and slow propagate
down to smaller radii, where faster variability arises in the

hard emission
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The spectrum of the rapid varmability

Disc Reflection Compton tail
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softer states,
always less than in
time averaged
spectra

* Increasingly
harder than
time averaged
In softer states






x No disc component!

Region of rapid variability



x No disc component!

Region of rapid variability
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As disc moves closer:
- more seed photons

- stronger reflection
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As disc moves closer:
- more seed photons
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becomes softer as overlap —
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LOOKING AT THE QPO

Very similar to
rapid var.

Harder than

average Compt.

component
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OPO arises 1n the inner accretion flow!
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Tilted inner flow gives
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Observed flux from Compton region:
Fe(0) o 1(0)cosO = (1+bcosO)cosO = b/2+cos0+b/2.cos20
b depends on optical depth - strongest harmonic furthest out!

Viironen & Poutanen (2004)
Veledina et al. (2013)
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In the hardest state, there is no harmonic. In the softer states, it is only
present at low energies.

Time-averaged spectrum (lower panels) in the softer states is not well-fit by
disc, comptonisation and reflection. Additional component needed at lower
energies (<15 keV). Parameters cannot be constrained by available data...
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Compare the QPO to the time-averaged
spectrum.

QPO spectrum behaviour similar to J1550: no
disc component, very little spectral evolution.
Can be fit using Comptonisation+reflection

The harmonic behaviour is very different. In
the intermediate state it is similar to the QPO,
but in softer states it is very different! Cannot
be just a geometrical effect...
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The harmonic spectrum is very similar to a soft (thermal) Compton
component. We can use this to constrain the extra component needed

for the time-averaged spectra - very good fit!

The electron temperature of ~9 keV suggests that it arises at the edge of

the hot inner flow. Doubling of frequency because of stabilizing disc?

Conclusion: The Comptonization region is inhomogeneous.
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Are we seeing two different mechanisms for the harmonic?

If so, does inclination play a role in which one we see?



s« Fast timing can probe inner regions of the accretion
flow, and thereby the properties of the black hole

2 Radiation spectra alone not enough to determine
emission components.

s« Comptonization region(s) are inhomogeneous!
2 QPO spectra support precessing inner flow.

s Harmonic could be angular dependence of flux from

edge of Compton region, or oscillations from of the
overlap region.






