RAPID VARIABILITY AS A PROBE OF WARPED SPACE-TIME AROUND BLACK HOLES

Magnus Axelsson
Tokyo Metropolitan University

With: Chris Done (Durham University) and Linnea Hjalmarsdotter (Moscow State University)

Higher mass accretion (soft state)

Low mass accretion (hard state)

NOT SO SIMPLE...

Many different spectral states and corresponding geometries

Done et al. (2007)

Even in "classic" hard state, there are likely several spectral components.

VARIABILITY ON ALL TIMESCALES

Flux distribution is lognormal

rms = sqrt [$(1/N) \sum_{i=1,N} (flux_i - mean)^2$]

Linear rms-flux relation

Cannot get this from shot-noise or additive process (sum of independent regions)

MRI CAUSING TURBULENCE

Krolik, de Villiers, Hawley

MRI CAUSING TURBULENCE

Krolik, de Villiers, Hawley

But emission depends on m - cannot vary faster than local viscous timescale!

But emission depends on m - cannot vary faster than local viscous timescale!

But emission depends on m - cannot vary faster than local viscous timescale!

But emission depends on m-cannot vary faster than local viscous timescale!

Origin of broad band variability

Fluctuations start at large radii - soft and slow propagate down to smaller radii, where faster variability arises in the hard emission

CONNECTING SPECTRA AND VARIABILITY

XTE J1550-564

Axelsson et al. (2013)

Axelsson et al. (2013)

Large spectral variations in total spectrum

Variability spectrum does not change appearance much

The spectrum of the rapid variability

No disc at any time

- No reflection in harder states
- Some reflection in softer states, always less than in time averaged spectra

- Compton very similar in harder states
- Increasingly
 harder than
 time averaged
 in softer states

Axelsson et al. (2013)

Region of rapid variability

No disc component!

Region of rapid variability

As disc moves closer:

- more seed photons
- stronger reflection

No disc component!

No disc component!

As disc moves closer:

- more seed photons
- stronger reflection

Average Comptonization becomes softer as overlap increases - less change for variability

THE QPO AND HARMONIC

10-

10⁻³

LOOKING AT THE QPO

Very similar to rapid var.

LOOKING AT THE QPO

Very similar to rapid var.

Harder than average Compt. component

LOOKING AT THE QPO

Very similar to rapid var.

Harder than average Compt. component

QPO arises in the inner accretion flow!

Axelsson et al. (2014)

...which gives varying spectral components.

Animations from A. Ingram

Precessing inner flow gives variable illumination of the disc...

...which gives varying spectral components.

Animations from A. Ingram

Precessing inner flow gives variable illumination of the disc...

HARMONIC

Softer than QPO

Similar to average Compt. in softer states

Axelsson et al. (2014)

Observed flux from Compton region:

 $F_E(\theta) \propto I(\theta)\cos\theta \approx (1+b\cos\theta)\cos\theta = b/2+\cos\theta+b/2\cdot\cos2\theta$

b depends on optical depth - strongest harmonic furthest out!

Viironen & Poutanen (2004) Veledina et al. (2013)

GX 339-4

In the hardest state, there is no harmonic. In the softer states, it is only present at low energies.

Time-averaged spectrum (lower panels) in the softer states is not well-fit by disc, comptonisation and reflection. Additional component needed at lower energies (<15 keV). Parameters cannot be constrained by available data...

GX 339-4

Preliminary!

Compare the QPO to the time-averaged spectrum.

QPO spectrum behaviour similar to J1550: no disc component, very little spectral evolution. Can be fit using Comptonisation+reflection

The harmonic behaviour is very different. In the intermediate state it is similar to the QPO, but in softer states it is very different! Cannot be just a geometrical effect...

The harmonic spectrum is very similar to a soft (thermal) Compton component. We can use this to constrain the extra component needed for the time-averaged spectra - very good fit!

The electron temperature of ~9 keV suggests that it arises at the edge of the hot inner flow. Doubling of frequency because of stabilizing disc?

Conclusion: The Comptonization region is inhomogeneous.

Are we seeing two different mechanisms for the harmonic?

If so, does inclination play a role in which one we see?

CONCLUSIONS

- ** Fast timing can probe inner regions of the accretion flow, and thereby the properties of the black hole
- ** Radiation spectra alone not enough to determine emission components.
- Comptonization region(s) are inhomogeneous!
- **QPO** spectra support precessing inner flow.
- ** Harmonic could be angular dependence of flux from edge of Compton region, or oscillations from of the overlap region.

THANK YOU!