Hot Plasma Emissions in the Ultracompact Binary Pulsar 4U 1626-67

Norbert S. Schulz, Herman L. Marshall, Deepto Chakrabarty Massachusetts Institute of Technology Kavli Institute for Astrophysics & Space Science

Ultra-compact binary: P_{orbit} = 42 min, $a_x \sin i < 8$ lt-ms $\Rightarrow a_x << 3.4x10^5$ km (< Earth-Moon system) Degenerate He or CO white dwarf (0.02-0.06 M_{sun}) P_{spin} =7.66 sec; i ~ 20 °; M_{acc} ~ 10⁻¹⁰ M_{sun}; B ~ 6-8x10¹² G, R_{co} = 6.5 x 10⁸ cm L_x > 10³⁶ erg/sec ; D > 3 kpc [5 - 13 kpc]

(From Chakrabarty et al. 1997, Chakrabqrty 1998)

130.270

Torque reversal history:

Chakrabarty et al. 1997

Camer-Arranz et al.2010

Ultra-compact binary: P_{orbit} = 42 min, $a_x \sin i < 8$ lt-ms $\Rightarrow a_x << 3.4x10^5$ km (< Earth-Moon system) Degenerate He or CO white dwarf (0.02-0.06 M_{sun}) P_{spin} =7.66 sec; i ~ 20 °; M_{acc} ~ 10⁻¹⁰ M_{sun}; B ~ 6-8x10¹² G, R_{co} = 6.5 x 10⁸ cm L_x > 10³⁶ erg/sec ; D > 3 kpc [5 - 13 kpc]

(From Chakrabarty et al. 1997, Chakrabqrty 1998)

Schulz et al.2002 : Chandra

TABLE 1: CHANDRA HETGS X-RAY OBSERVATIONS

Obsid	Start Date	Start Time	Exposure	HETG 1st rate
	[UT]	[UT]	[ks]	$cts s^{-1}$
104	Sep 16 2000	14:57:01	40	2.41
3504	Jun 03 2003	02:30:01	97	1.68
11058	Jan 14 2010	11:53:01	80	6.80
104 3504 11058	Sep 16 2000 Jun 03 2003 Jan 14 2010	14:57:01 02:30:01 11:53:01	40 97 80	2.41 1.68 6.80

MΚ

Schulz et al. 2016

O/Ne Doppler lines: +/- 4000 km s⁻¹

Fe K Fluorescence line: narrow, resolved? [1.7 sigma]

No broad relativistic OVIII observed as in other UCB (Madej et al. 2010, 2011; Schulz et al. 2010)

See Koliopanos et al., next talk

Ne/O Emission is from collisional ionized plasma Plasma is CO dominated, no H Plasma is hot: T = [1.1, 10.0] MK in all observations VEM limits emission volume

Emission measure is limited to Ne X and C IV, i.e. no lower temperatures than 1 MK

Photo-ionized model: XSTAR

TABLE 5 DISKLINE FIT PARAMETERS BEFORE AND AFTER THE 2008 TORQUE REVERSAL

Line	Torque	λ_{Dl}	A_{Dl}	q	$R_{in}(M)$	$R_{out}(M)$	i	χ^2_{ν}
	reversal	Å	(1)		$10^3 \mathrm{GM/c^2}$	$10^3 \mathrm{GM/c^2}$	deg.	
Ne x	before	$12.13 {\pm} 0.01$	$0.17 {\pm} 0.04$	-4.6	$3,9^{+0.7}_{-0.9}$	$94.3^{+5.6}_{-81.0}$	$38.2_{-4.5}^{+6.7}$	1.21
O VIII		$18.97 {\pm} 0.01$	$0.18{\pm}0.05$	-4.6	$4.0^{+1.6}_{-0.9}$	$4.0^{+19.1}_{-1.1}$	tied	_
Ne x	after	$12.13 {\pm} 0.01$	$0.19{\pm}0.01$	-3.6	$1.8^{+0.2}_{-0.5}$	$10.9^{+10.2}_{-2.8}$	tied	_
O VIII		$18.97 {\pm} 0.01$	$0.22{\pm}0.03$	-3.6	$1.7^{+0.2}_{-0.1}$	$3.8^{+1.3}_{-0.6}$	tied	—

 $(1) \ 10^{-2} \ \mathrm{ph} \ \mathrm{cm}^{-2} \ \mathrm{s}^{-1}$

O VIII before torque reversal $R_{in} = 8.3 \times 10^8 \text{ cm}$ $R_{in} > R_{co}$

O VIII after torque reversal R_{in} = 3.7×10^8 cm R_{in} < R_{co}

Distance estimate for
$$401626-67$$

For accretion disle spin-up of a plsar, we expect
 $2\pi \Gamma z' = M\sqrt{\Delta M rin}$
From observations after the 2008 trajec reversal, we have
 $z' = 4 \times 10^{-13} \text{ Hz}/\text{s}$
 $r_{in} = 1700 \text{ GM}$
 $r_{in} = 1700 \text{ GM}$
 $r_{in} = 1700 \text{ GM}$
 $r_{in} = 2 \times 10^{15} \text{ g/s}$ (independent of NS mass)
This implies an accretion luminosity of
 $L = GMM = 2 \times 10^{36} (M) \text{ erg/s}$
But we know that $\chi ray flux after the torque reversal is$
 $Fx = 5.2 \times 10^{-10} \text{ erg}/\text{cm}^2/\text{s}$ (unabs., 0.3-10 keV)
so we can infer
 $d = (\frac{L}{4\pi Fx})^{4/2} \approx 5.6 (M) \frac{1/2}{2M_0} \text{ kpc}$
Given the NS mass uncertainty, this implies Witherpore
 $A.5 - 5.5 \text{ kpc}$.

Summary - What have we learned so far

- 1. Plasma line emissions from Ne/O/C are from a collisionally ionized plasma of very limited volume located close to the magnetospheric radius.
- The heated plasma has temperatures ranging from ~1 MK to 10 MK. The heating mechanism is unknown. The closeness to R_{mag} may suggest shock heating of disk plasma at the magnetosphere
- 3. The Doppler lines from Ne, O, and C are now clearly identified as disk lines reinforcing the notion that we observe a disk plasma at R_{mag} and plasma density of 10¹⁵ g cm⁻³
- 4. The disk lines before and after torque reversal reveal an inclination of 38° almost twice the value previously assumed. It appears consistent with a CO white dwarf companion.
- 5. The disk lines also show that the inner radius of the hot plasma region crosses the R_{co} before and after torque reversal suggesting that R_{mag} is also crossing.
- 6. The data after torque reversal also show a barely resolved narrow Fe K line with an origin in the accretion disk, but likely not at the inner disk radius (see also Koliopanos&Gilfanov 2015).
- 7. Ne appears to be enhanced in the collisional heated plasma suggesting a general enhancement in the plasma and a more evolved CO white dwarf.
- 8. Finally, the data after the 2008 torque reversal (spin up) allow a distance determination of 4.5 to 5.5 kpc, clearly ruling out significantly larger values.

