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Newtonian Cosmology
1.Newtonian self-gravitating fluid: described 

by the continuity, Euler and Poisson 
equations


2.rescale physical coordinates to comoving 
coordinates 
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Linear perturbations

for dust, linearise, combine continuity and Euler, 
substitute from Poisson, to get


In GR, for a w=constant fluid, use energy and 
momentum conservation equations, and the Energy 
constraint, to get (Δ gauge-invariant)



Linear perturbations

for dust, linearise, combine continuity and Euler, 
substitute from Poisson, to get


In GR, for a w=constant fluid, use energy and 
momentum conservation equations, and the Energy 
constraint, to get (Δ gauge-invariant)



Solution in EdS and top-hat

top-hat turnaround and collapse time: 
characterized by the value of δ at these 
events:

�c = 1.696�T = 1.06



the Averaging, BR & Fitting program

• Strictly speaking, Einstein Field Equations (EFE) describe the 
fundamental interaction, gravity.

• Only the truly inhomogeneous universe obeys EFE, precisely in the 
same way that in the Newtonian N-body problem each particle 
interact will all others

• Thus, in principle we should simulate inhomogeneous models and 
extract an average expansion a-posteriori

• Instead, we first assume the existence of a fitting homogeneous 
isotropic metric, then solve EFE for this.

• We should instead average EFE, obtaining an effective homogeneous 
limit that satisfies EFE with effective back-reaction terms. 



Buchert’s approach to 
the averaging problem(*)

consider an irrotational dust spacetime [(-,+,+,+) and c=1] and 
adopt synchronous comoving coordinates, so that the line element 
reads


where hab is the spatial metric of the constant t hypersurfaces, 
with determinant h.


then we define the average of a scalar Ψ on a compact 
coordinate domain D and the proper volume VD as 

(*) see e.g.: Buchert (2008), GRG  40(2), pp.467–527 

   Buchert (2011) CQG 28(1), p.4007.




Buchert’s averaging
From V, we can then define the average scale factor


then, the key to getting BR through averaging is the non-
commutativity of the time derivative and the spatial averaging


then, averaging the continuity equation, Hamiltonian constraints 
and the Raychaudhuri equation gives effective Friedmann 
equations




in the effective Friedmann equations


the term          represents the average of the spatial Ricci 
scalar, while


is the back-reaction term, which can be positive. If this term 
satisfies                      then clearly it can act as Dark Energy 


Buchert’s averaging



So, we can get an accelerated expansion of the averaged volume if                    
, i.e. if the non-local variance of the local expansion dominates. 


Even if the local expansion rate is slowing down, this non-local effects 
may cause acceleration.


 This non local effect is in essence the main argument of those 
supporting the idea that back-reaction can be important against the 
argument - used by detractors - that local perturbations are always 
very small.


Big bonus: there is no coincidence problem. Not only because there isn’t 
a real additional DE, but really because the effective BR DE, the 
variance of Θ, grows naturally as structure grows.

Buchert’s averaging



Szekeres-Szafron 
models



We reconsider Szekeres (1975) models including Λ, first 
considered by Barrow & Stein-Schabes (1984) - Cosmic No-Hair

Meures & Bruni arXiv:1103.0501

α=0



EFE dictate Z(x,t) =A(x)+F(t,z)



BR in Szekeres-Szafron 
Szekeres models have been generalised by Szafron to include a 
homogeneous pressure p=p(t), a free function


we are free to choose p(t) as p=wρ0S-3(1+w), i.e. as the pressure 
of a FLRW model with p=wρb equation of state, with w=const, 
where S=S(t) is the scale factor


it then turns out that again we have that S(t) can be 
interpreted as the scale factor of the FLRW background, and 
Z=A+F the exact perturbation


we are interested in the late time behaviour; therefore we 
neglect a possible extra p=0 component and we restrict to the 
case of -1/3<w≤0, so that the w-fluid component dominates at 
late times but is not a DE



BR in Szekeres-Szafron
gauge-invariant density perturbations in a 
w=const FLRW universe obey the equation


it turns out that with our choice of p(t), the F 
function in the Szekeres metric satisfies


we may therefore interpret F as a large-scale 
perturbation on top of the FLRW background 
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BackReaction in Szekeres-
Szafron models

Indeed


and 


so that, as in the w=0 case, for the growing mode  
δ∝-F at early times 

focusing on the case of voids, for F>0, at late 
times δ ∝constant 



BackReaction in Szekeres-
Szafron models

In this model, we now focus on voids and we 
consider a comoving coordinate volume D


we can now perform a Buchert averaging and, 
crucially, compute  the back-reaction term in 
Buchert’s equations due to the growing mode


We therefore average the expansion and shear, 
which are



Strong BR in Szekeres-
Szafron models

we get 


so that the back-reaction term is 


and the average curvature is


to find the averaged scale factor, we have to 
insert these into Buchert’s eqs.



back-reaction in action and a  
no-go theorem

we find that, asymptotically,


 


back-reaction no-go theorem for Szkeres-Szafron 
models:


in a Szkeres-Szafron model with decelerating 
background with w>-1/3 back-reaction is effective in 
speeding up the expansion. However, the average 
scale factor never accelerate


it is the negative average curvature term and not Q 
that produces the extra speed-up  aD ⇠ t↵
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