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Abstract
In this work we construct a relativistic extension of the MODified Newtonian Dynamics (MOND) in the metric formalism f (χ) using the Palatini approach. We show that a simple power law: f (χ) = χb, with b = 3/2 corresponds to the

non-relativistic form of MOND. Amongst the many approaches proposed to extend MOND to a relativistic regime, the Palatini metric formalism discussed here, yields second order field equations, which is a desirable (but not compulsory)
requirement in a gravitational theory. We briefly discuss lensing applications of this proposal.

Introduction
Through dynamical observations of dwarf spheroidal galaxies (Hernandez et al., 2010), globular

clusters (Hernandez and Jiménez, 2012) and even wide open binaries (Hernandez et al., 2012), it has
became clear that Kepler’s third law appears not to hold in its classical form on these systems. Instead
Tully-Fisher relation substitutes Kepler’s third law of motion.

The Tully-Fisher relation is an empirical relation between intrinsic luminosity of a galaxy (mass)
and the width of its HI emission lines (rotation velocity). Briefly, it can be described as V 4 ∝M .

Milgrom (1983) noted that there is a constant acceleration a0 ∼ 10−10ms−2 that appears
“unexplained” in very different scaling relations. He hypothesized a modification of Newtonian
dynamics below this constant acceleration a0. For large accelerations a >> a0 gravity is Newtonian.
For small accelerations a << a0 the modification would apply in the following form:

a =

√
a0GM

r
, (1)

In a recent work Bernal et al. (2011) developed a relativistic action based on dimensional grounds.
This theory is built as a f (χ) function, where χ := RL2

M where R is the Ricci’s curvature scalar and
LM is a coupling constant to be fixed by empirical astronomical observations. In the weakest limit
of this theory, acceleration is reduced to the MONDian one. Also, Mendoza et al. (2013) proved the
compatibility of this theory with lensing observations.

In this work, we show the feasibility to recover the MONDian acceleration from an f (χ) theory in
the Palatini formalism.

f (χ) in Palatini Formalism
THE METRIC TENSOR AND THE CONNECTION ARE TWO DIFFERENT GEOMETRIC OBJECTS.

Let us start with a dimensionally correct action motivated by the one built by Bernal et al. (2011)

S =
c3

16πGL2
M

∫
f (χ)
√
−gd4x +

1

c

∫
LM
√
−gd4x, (2)

where f (χ) is a dimensionless function given by: χ := L2
MR.

LM is a quantity with dimensions of length andR is not the traditional Ricci scalar R but is defined
by: R := gµνRµν, with gµν being the metric tensor and Rµν the Ricci tensor defined exclusively in
terms of the affine connection ∗Γα µν.

The trace of the resulting equation from the variations of the action (2) with respect to the metric is
given by:

L2
M
f (χ)

dχ
R− 2f (χ) =

8πGL2
M

c4
T. (3)

The variations with respect to the connection ∗Γα µν yields:

∇λ
(√
−hhµν

)
= 0, (4)

where we have made the following conformal transformation: hµν := gµνdf (χ)/dχ.
This last result is equivalent to the metric compatibility for the hµν metric and tells us that ∗Γα µν is

the Levi-Civita connection of the hµν metric.
For this conformal transformation,R is related to the usual Ricci scalar R by:

R = R− 3

f ′
∆f ′ +

3

2f ′2
∇µf ′∇µf ′. (5)

Equations (3) and (5) are the two fundamental equations of our theory. From (3) it is possible find
R as a function of the matter, namely: R = R(T ) and then replace this result into (5) (f ′ is a function
ofR and therefore of T ) in order to find R = R(T ), which is the solution we are looking for.

f (χ) as a power law

From now onwards we assume: f (χ) = χb. With this, the equation for R = R(T ) is:

R =

8πGL
2(1−b)
M T

c4(b− 2)

1/b

+
3(b− 1)

bT

[
∆T − (b + 1)

2bT
∇µT∇µT

]
. (6)

This is the exact relation between the curvature R and the matter T .
To order of magnitude ∇ ≈ 1/r, and so, R ≈ R − 3/(2r2). When r → ∞, that is, in regions far

enough from the matter distribution, where a / a0 it follows that: R ≈ R.
Since we are interested in the MONDian regime, this approach is useful to our purposes and equa-

tion (6) takes the following form:

R =

8πGL
2(1−b)
M T

c4(b− 2)

1/b

. (7)

Weak field limit
Let us now perturbe spacerime about the flat Minlowsky metric up to second perturbation order. We

take as base the work of Mendoza and Olmo (2014), in which they proved that, to be in accordance
with the astronomical observations of lensing of individual, groups and clusters of galaxies together
with the Tully-Fisher law, the metric coefficients are at second pertirvative order:

(2)gtt = 1 +
2φ

c2
, (2)grr = −1 +

2φ

c2
, (2)gθθ = r2

(
−1 +

2φ

c2

)
, (2)gϕϕ = r2sin2θ

(
−1 +

2φ

c2

)
(8)

which implies than the PPN parameter γ = 1.
Since the Tully-Fisher law describes the motion of non-relativistic dust particles, then the energy-

momentum tensor trace is T = ρc2 with ρ the matter density. Then it follows that:

− 2

c2
∇ · a =

8πGL
2(1−b)
M ρ

c2(b− 2)

1/b

. (9)

where the acceleration is defined by: a := ∇φ.

Recovering MOND
ORDER OF MAGNITUDE APPROACH.

The flattening of rotation curves requires a ≈ r−1, which according to equation (9) means: b = 3/2.
Following (Bernal et al., 2011), we define: LM := ζrαg l

β
M , where rg and lM are two “fundamental”

lengths constructed with the quantities characterizing the problem:

rg :=
GM

c2
, lM :=

(
GM

a0

)1/2

. (10)

The speed of light should not appear in a non-relativistic description of gravity, and so: LM ∝ c.
With this restriction and the condition α + β = 1, it follows that α = −1/2, and β = 3/2.

Direct substitution of the values obtained for b and LM , into equation (9) it follows that:

−2∇ · a = (a0GM)1/2
[

2δ(r)

ζr2

]2/3

. (11)

where we have used the fact that for a point-mass density ρ = Mδ3(r) = Mδ(r)/4πr2, where δ3(r)
is the 3-dimensional Dirac’s delta function and δ(r) is the 1-dimensional one.

FULL SECOND ORDER EQUATION.

Let us consider Dirac’s delta distribution as a normal function, so that we express the following:
[δ(r)]2/3 = [δ(r)]−1/3δ(r), and assume a power law for acceleration, i.e.: a = λrσer.

Then, integrating in spherical coordinates, and using for δ(0) the following expression (Gsponer,
2008):

δ(r = 0) = lim
r→0

1

2πr
, (12)

equation (11) turns into:

−λ(σ + 2)

σ
rσ
∣∣∣∣∞
0

= (a0GM)1/2
(
π

ζ2

)1/3 1

r

∣∣∣∣
0
. (13)

Since ζ is a constant and λ is r-independent, necessarily σ = −1, as expected from the previous
order of magnitude analysis.

In order to recover a MONDian acceleration, it is necessary that λ = − (a0GM)1/2, and so a cali-
bration for ζ is obtained: ζ = 2

√
π.

Conclusions and perspectives
We obtained values for the parameters b, α, β and ζ of our theory. This implies that it is possible to

build an f (χ) = χ3/2 theory in the Palatini formalism which in its weak field limit of approximation
reproduces a MONDian acceleration.

We choose to work in the frame of the Palatini formalism since it provides a deeper understanding of
our proposal than the simple metric formalism since we do not restrict to a special kind of connection.
While it is true that in GR, the Palatini formalism does not seems to bring something new, its use in
areas where GR is not tested has been extended.

The next step to test our proposal is to see whether the Palatini proposal together with the results
obtained by gravitational lensing in individual, groups and clusters of galaxies, i.e. with the PPN
parameter γ = 1, reproduce the accelerated expansion of the universe observed in SNIa.

The main complaint that the f (χ) theory has had since it was proposed is about the presence of the
mass M in the action, via LM . Our next goal is to build a proposal which has no dependence on the
mass M , but on the mass density ρ and make a connection with the energy-momentum tensor so that
the proposal will be an f (R, T ) developed by Harko, Lobo, Nojiri, and Odintsov (2011).
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