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The Problem with Quantum Gravity

General Relativity agrees perfectly with experiments, but only if 
you ignore the quantum character of matter 

The standard quantum theory of matter agrees perfectly with 
experiments, but only if you ignore dynamical geometry 

So every experiment is OK with one theory or the other 

But a blend of the two theories makes crazy predictions 

How does dynamical geometry reconcile with the quantum? 

Can experiments help guide theory?
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Rotation in Standard Theory

Newton’s thought experiment:  a rotating vessel of water 
proves the physical reality of absolute space 

Mach asked why this local rotation agrees with distant stars 

Einstein’s general theory of relativity explains why: local and 
global frames are connected
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Absolute Space and Rotation in General Relativity

There is an absolute local inertial frame at every event 

GR answers Mach’s question 
GR gives a complete and exact account of the relationship 
between space and classical matter, including rotation 
“Frame dragging” is measured and agrees with GR 
(Sometimes space rotates a lot, e.g., Kerr black holes) 

The issue is settled, except for quantum mechanics!
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Quantum systems, entanglement, and correlations

Matter is a quantum system 
Whole system =  superposition of states 
Every subsystem of a whole is entangled with every other 

A measurement projects onto a subspace  
A measurement  of one subsystem projects all the others 

Theory only predicts correlations among observables 
Nothing “happens” at a definite place or time: no “locality” 
(although correlations obey causality) 
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Absolute Space and Quantum Matter

In GR, the local inertial frame is absolute and deterministic, even for 
infinitesimal volumes 

Quantum particles “know about” classical absolute space —- the local 
inertial frame—- which itself is not a quantum system 
But matter states are quantum superpositions:  

In GR, space interacts with a classical model of matter, even though 
real matter is quantum  

This standard approximation works well on scales much larger than 
the Planck length, but it cannot be exact 

+
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The Universe in Planck Units

black
 holes

R= m-1 

R= 2M 

Planck mass black holes 
are quantum objects
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where `
P

=
p

~G/c3 = 1.616 ⇥ 10�35 m denotes the Planck length. They represent a measure of the (inverse of
the) information density in the geometry. We refer to correlations of this magnitude as “exotic” Planck correlations
because they are not produced in standard classical geometry. Experiments with interferometers— in particular, the
Fermilab Holometer[26]— have shown that it is possible to measure position correlations with instrumental metrology
at better than the Planck sensitivity in Eq. (2).

Such experiments can in principle probe Planck scale quantum degrees of freedom [15–22]. A signal is produced
by light interference from a system of mirrors in a specific spatial arrangment. The time correlation of the signal, as
in Eq. (1), depends on the detailed spatial layout of the apparatus, and the detailed character of the exotic 3+1 D
position correlations. An experimental program with a variety of configurations can map out the structure of Planck
scale quantum correlations and their relationship with properties of matter fields.

The projection operators for a given apparatus are not calculable in standard theory, since they depend on a
phenomenology for a still-unknown theory of quantum geometry. On the other hand it is often still possible to predict
the possible forms of correlation from the arrangement of mirrors in space, and to make quantitative tests of specific
hypotheses about the geometrical correlations. These hypotheses necessarily lay beyond the framework of standard
theory, but provide theoretical estimates of the density and character of information in a space-time system that can
be compared with the magnitude and character of the correlations in data. In the following sections of this paper,
we predict new, specific manifestations of exotic correlation associated with rotation and emergent direction. First
however, we review estimates of the magnitude of exotic correlations from extrapolations of well tested physics.

Gravitational Bounds on Matter Quantum Degrees of Freedom

A classical geometry is a continuous system, with an infinite density of position information. Significant deviations
from this approximation are predicted at the Planck scale. A variety of theoretical estimates suggest that exotic
correlations, originating from Planck scale quantum geometry, may have a magnitude in large systems that corresponds
to position displacements much larger than the Planck length. Those estimates are reviewed here: first, general
bounds on the density of information, and then, more specific indications that these should manifest in observable
exotic position and direction correlations.

Idealized Chandrasekhar Radius and Mass for Gravitating Systems of Relativistic Quanta

It is useful to start by reviewing Chandrasekhar’s instability[30] in gravitating systems of relativistic quantum
matter. Although these systems can be described without quantizing gravity itself, or even invoking the full apparatus
of general relativity or concepts such as black holes, it is no accident that Chandrasekhar’s scales of mass and radius
appear in other, more exotic contexts summarized below: they all invoke similar criteria that relate quantum states of
matter to global properties of a gravitating system. For both astrophysical systems and quantum field systems with
gravity, the behavior changes qualitatively at this radius.

Chandrasekhar derived solutions for a spherical system of matter in hydrostatic equilibrium, so that gravitational
force is in balance with a gradient in degeneracy pressure. He showed that the system becomes unstable when the
mean velocity of the supporting particles, which in the case of a degenerate dwarf stellar remnant are mostly electrons,
approaches the speed of light. Formally in his calculation, the radius of the equilibrium solution goes to zero. It is not
necessary to invoke the concept of black holes; indeed, it is adequate to use a Newtonian approximation for gravity.

Suppose the mass is dominated by baryons whose mean number density n equals that of electrons. Denote their
masses by m

b

and m
e

respectively. Let M and R denote the mass and radius of the system, so that

M ⇡ nm
b

R3. (3)

(Exact numerical prefactors depend on the details of the equilibrium density profile; they do not a↵ect our discussion
and are omitted here.) At the onset of the instability, when the velocity of degenerate electrons approaches the speed
of light,

n ⇡ (m
e

c/~)3, (4)

where c denotes the speed of light and ~ denotes Planck’s constant. This is also the approximate density of
information— the number density of degrees of freedom of any field up to mass m

e

.
The criterion of hydrostatic equilibrium is approximately that the total kinetic energy of the electrons is the same

as the gravitational binding energy, and at the onset of instability this yields

R3
Chandra

nm
e

c2 ⇡ GM2
Chandra

/R
Chandra

. (5)

(in Planck units)

(in Planck units)
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From these we derive the Chandrasekhar radius and mass at the onset of instability:

R
Chandra

/`
P

⇡ m2
P

/m
e

m
b

, (6)

and

M
Chandra

/m
P

⇡ m2
P

/m2
b

, (7)

where m
P

=
p

~c/G denotes the Planck mass. The same critical scales emerge from other kinds of quasi-equilibrium
states dominated not by degeneracy pressure, but by thermal pressure; the stability depends on when the velocity of
the particles that dominate the pressure approach the speed of light.

In this sketch approximation, the (critical maximum) mass M
Chandra

only depends on m
b

, which makes it clear why
the masses of neutron stars nearly match those of white dwarfs. Indeed, M

Chandra

sets the scale for all stellar-mass
systems. The radius R

Chandra

also depends on the lighter particle mass m
e

; lighter particles yield a larger critical
minimum radius when collapse occurs, so that white dwarves are much larger than black holes of the same mass when
they become unstable.

For the purposes of this paper, it is useful to define an idealized Chandrasekhar radius and mass, in terms of a
single particle mass m, that applies if the gravitational mass and pressure support comes from the same particles:

R
C

/`
P

⌘ (m/m
P

)�2, (8)

and

M
C

/m
P

⌘ (m/m
P

)�2. (9)

For m about the mass of the neutron, these approximately give the radius and mass of a neutron star. Since R
C

= M
C

,
the system is also close to the radius R

S

of a black hole, for which R
S

= 2M in Planck units.
While the Chandrasekhar mass (Eq. 9) has broad significance for shaping astrophysical systems, the idealized

Chandrasekhar radius (Eq. 8) takes on a universal significance in the relationship of field states with quantum
geometry. At larger separations, the e↵ect of gravity significantly alters field theory, as shown in Fig. (1). The e↵ect
can be interpreted as entanglement of fields with quantum geometry— a breakdown of the standard assumption of
classical geometry on large scales.

Gravitational Constraint on Virtual States of a Field Vacuum

To illustrate the e↵ect, consider a model of matter based on a relativistic quantum field, such as those of the
Standard Model, combined with gravity. An important di↵erence from the system studied by Chandrasekhar is that
the quantum system includes all possible states of the field, including nonzero occupation numbers for all of its modes.

Consider states of a field below some UV cuto↵ scale with wavelength � = ~/mc. In a volume R3, the field has
about N ⇡ (R/�)3 independent modes. In a state where each mode has mean occupation number of order unity, the
number of particles per volume is about n ⇡ (mc/~)3, as in the Chandrasekhar system. Thus, in a volume with a
size larger than Eq. (8), the excited field state has a mass larger than that of a black hole of the same size, which is
of course an impossible physical state, inconsistent with general relativity.

This paradox suggests that even in a vacuum, exotic Planck scale quantum correlations somehow produce an
“infrared cuto↵” to field states of mass m at the idealized Chandrasekhar radius (Eq. 8), which for standard fields
is a macroscopic scale. Such an infrared constraint would not have been noticed in particle experiments[22, 31]. The
e↵ective cuto↵ from this entanglement is again the system size shown in Fig. (1).

Holographic and Statistical Gravity

Black holes were discovered as classical solutions in a classical geometrical theory, general relativity. However,
an extensive literature on the theory of black holes suggests that general relativity has another formulation as an
emergent statistical system, with a holographic information content determined by the Planck scale.

Classical black holes obey analogs of thermodynamic relations, where the entropy of a black hole is one quarter of
the area of its event horizon in Planck units, and black holes radiate nearly as black bodies[32–36]. Thus, black holes
appear to be statistical systems composed of Planck elements, with a holographic information content proportional
to area. Many thought experiments and precise examples of holographic mappings in various spaces suggest that this
holographic property generalizes to any system with gravity, not just black holes[37–41].

=1019 GeV

proton

sun

observable universe

quanta



No Absolute Space at the Planck Length Scale

Imagine a quantum Newton bucket a Planck length across 
It is a superposition of spin states, like an atom 
Components of spin do not commute 
Rotational indeterminacy ~  one radian per Planck time 
Frame dragging by a quantum bucket makes it impossible to define 
determinate, classical local rotation at the Planck scale 
The local inertial frame does not exist at small scales 

This is radically different from standard absolute space 

Frames become nearly classical in larger, longer-lived systems 

But small, exotic quantum-gravitational rotational correlations  must 
exist that do not occur in standard theory 

+
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Conflict of Quantum Fields with Gravity on Large Scales

Consider a standard quantum field in a volume of size R 
Its general state is a superposition of excitations 
Some of these have  ~1 particle per independent mode of energy m 
Mass of this state exceeds black hole mass for  

R>m-2   in Planck units 
This field state is impossible in General Relativity 

The paradox occurs for large R, even at well studied values of m 

Very large R ==> cosmological constant catastrophe (more later) 

Conflict could simply be an artifact of disregard for exotic correlations with 
geometry on large scales 

Entanglement reduces independent degrees of freedom 
Effect not included in “UV completions” (e.g., string theory)
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Exotic Correlations of Quantum Geometry

Suppose space is a quantum subsystem, as well as matter 
There is no background absolute space or time 
Geometry is indeterminate— a superposition of states 
Geometry is entangled with the matter subsystem 

Finite information ==> finite number of degrees of freedom 
==> new, exotic correlations not in standard theory 

What is the character of exotic correlations on large scales? 

How can we study them?
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Magnitude of Exotic Correlations in Large Systems

There is no standard theory of quantum gravity 

But estimates of exotic correlation follow from simple thought 
experiments using standard quantum mechanics and gravity 

Estimate from standard quantum theory: the Planck diffraction scale 
This is much larger than the Planck length (following slides) 
Agrees with current experiments 
Also about the right amount of correlation needed to resolve conflicts 
of dynamical space-time and quantum matter
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Schrödinger wave equation for position of a free body of mass m: 

Extended waves obey a form of the Heisenberg uncertainty principle 

Express as a bound on position correlation in the time domain: 

Minimum departure from classical body at rest grows linearly with time

13
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Here, F (⌧) denotes a projection determined by the configuration of a measurement apparatus. In general, correlations
can be measured for two world lines, say x̂A and x̂B ; most of this paper focuses on the configurations where A and B

causal diamonds are almost the same.
The positional correlation encoded in ⌅ measures a lack of independence of values of x̂. In a classical space-time, ⌅

vanishes; this is possible because the information density in a continuum is infinite. The same is true in field theory,
which assumes a classical continuous space-time. In an emergent quantum space-time, ⌅ in general does not vanish,
and the positions of world-lines in some measurements can decohere gradually with time. The 2D density of position
eigenstates— that is, the number of independent world-line eigenstates per 2-volume in a particular x̂ projection—
has a finite value given by ⌅�1. Its value depends on the projection defined by the measurement, and the invariant
classical positional relationships between the world lines, particularly the causal diamonds traced by light propagation
in the apparatus.

The scaling with ⌧ can be estimated from dimensional considerations, or from analogy with other, standard quantum
systems. It is plausible that world lines decohere slightly at long durations, by an amount that would not yet have
been detected. As one example of a quantum system with this behavior, consider the standard position wave function
for the state of a particle of mass m at rest, that lasts for duration ⌧ . This form of standard Heisenberg uncertainty
can be derived in several ways[23–26], for example from a nonrelativistic Schrödinger equation for a mass m, in a
path integral approach by extremizing the action of a particle or body whose motion is described by a wave equation
with de Broglie wavelength ~/mc, or from a Wheeler-De Witt equation for a pendulum of mass m (ref. [1], Eq. 5.75)
in the low frequency, nearly free particle limit.

For all of these systems, with the standard assumption that directions in space are independent, the wave function
in classical position and time obeys

(@i@
i � 2i(m/~)@t) = 0. (2)

This equation can be solved with pure (infinite) plane wave eigenmodes. However, the state of a body localized in
space, whose position is prepared and measured at two times separated by an interval much longer than the inverse de
Broglie frequency, is better described by a symmetric gaussian solution for  (r, t), where r2 = xix

i, with a probability
density on constant-time surfaces given by

|h ⇤| i|2 / e

�r2/�(t)2
. (3)

These “paraxial” solutions for matter de Broglie waves are mathematically the same as the standard normal modes
of light[35] in a laser cavity. In the matter system, t takes the place of the laser beam axis coordinate z (that is,
constant-phase de Broglie wavefronts are nearly surfaces of constant time), and position measurements at particular
times, over an interval much smaller than the interval between measurements, takes the place of thin mirror surface
boundary conditions[23]. In this family of solutions, the rate of spatial spreading depends on the preparation of a
state: d�/dt is smaller for larger �. In the same way that a larger beam waist leads to a smaller dispersion angle, a
larger position uncertainty leads to slower spreading. Spreading of the wave function with time is unavoidable; any
solution of duration ⌧ has a mean variance of position at least as large as

h(r(t+ ⌧)� r(t))2i = �

2
0(⌧) > ~⌧/2m. (4)

Thus, d�0/d⌧ = ~/2m gives the minimum rate of decoherence in the position state of a body at rest over time.
Of course, these states also have an associated indeterminacy of momentum. Although the particle is classically

“at rest”, and there is a well defined expectation value for its rest frame, the actual velocity is indeterminate. In
this situation, the position variance between two times cannot be “squeezed away” into momentum uncertainty, or
vice versa; Eq. (4) gives the minimum spread of position between two times for any state[32, 36]. The momentum
uncertainty in the minimum-position-uncertainty state decreases with ⌧ like �p ⇡ (2m~/⌧)1/2, which is why de
Broglie wave states behave almost like classical world lines on large scales.

Similarly, if paths in a background quantum space time are described by quantum wave propagation similar to Eq.
(2), with a fundamental timescale set by the Planck time (that is, setting m = mP = ~/c2tP ), then its emergent
world lines decohere over duration ⌧ by about

⌅(⌧) ⇡ h(x(t+ ⌧)� x(t))2i ⇡ c

2
⌧ tP /2. (5)

To be sure, this background decoherence cannot be detected by a local measurement, in the same way that quantum
decoherence between independent paths of mass mP bodies can be measured by comparing their positions. It may
also include exotic correlations between di↵erent directions and components of position, which we have not included.
However, the scaling of �2

0(⌧) and ⌅(⌧) with ⌧ are the same: world lines should decohere at a rate given approximately
by d⌅/d⌧ ⇡ c

2
tP /2.

Standard Quantum Correlations in Extended States  
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FIG. 1. Causal diamonds. FIG. 2. A comparion of causal support in the two classes of correlation functions.
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has a finite value given by ⌅�1. Its value depends on the projection defined by the measurement, and the invariant
classical positional relationships between the world lines, particularly the causal diamonds traced by light propagation
in the apparatus.
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For all of these systems, with the standard assumption that directions in space are independent, the wave function
in classical position and time obeys

(@i@
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Broglie frequency, is better described by a symmetric gaussian solution for  (r, t), where r2 = xix

i, with a probability
density on constant-time surfaces given by

|h ⇤| i|2 / e

�r2/�(t)2
. (3)

These “paraxial” solutions for matter de Broglie waves are mathematically the same as the standard normal modes
of light[35] in a laser cavity. In the matter system, t takes the place of the laser beam axis coordinate z (that is,
constant-phase de Broglie wavefronts are nearly surfaces of constant time), and position measurements at particular
times, over an interval much smaller than the interval between measurements, takes the place of thin mirror surface
boundary conditions[23]. In this family of solutions, the rate of spatial spreading depends on the preparation of a
state: d�/dt is smaller for larger �. In the same way that a larger beam waist leads to a smaller dispersion angle, a
larger position uncertainty leads to slower spreading. Spreading of the wave function with time is unavoidable; any
solution of duration ⌧ has a mean variance of position at least as large as

h(r(t+ ⌧)� r(t))2i = �

2
0(⌧) > ~⌧/2m. (4)

time duration between 
measurements

 width of 
position wave 

function

h/mc2, de Broglie period 

wave function 
envelope



Mathematical equivalents: wave function and laser beam 

       wave equation for a massive body <=> paraxial wave equation for light        
        quantum wave function of a body <=> field amplitude in a cavity 
                                         body at rest  <=> gaussian mode of cavity 
      spreading of wave function in time <=> transverse spreading of beam 
preparation and measurement of state <=> curvature of mirrors 
  
 

time duration

 wave function 
of a body of 

mass m around 
world line

h/mc2

spatial cavity size

2D width of laser 
light around beam 

axis

wavelength
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Planck Diffraction Scale: variance of extended Planck state 

Model the geometrical quantum state as a Planck variance wave 

classical ray <=> expectation value of wave direction 

actual state is a superposition: 

wave function variance <=> exotic correlation 

Posit that exotic correlation at separation ~R  is set by the directional 
resolution of a Planck wave function: 

15 radial separation R

Minimal angular 
spread of 

Planckian wave

Planck 
wavelength
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Exotic Correlations of Transverse Position and Direction

The arguments just given provide estimates of the amount of information, and the scale of entanglement of geometry
and field states. However, they do not reveal the origin or nature of the entanglement. Based on these estimates
alone it is possible to imagine that the entanglement may be of a very subtle nature. The following arguments
more specifically suggest that new Planckian quantum behavior in large systems may appear as long-range, nonlocal
geometrical correlations of the world lines of massive bodies. They take di↵erent complementary approximations to
the emergent space but all approximately agree on the magnitude and character of exotic Planck correlation, related
to a transverse width for the geometrical position wave function of a geometrical position operator x̂ that depends on
separation R approximately as

⌅(c⌧ = R) ⇡ hx̂2
?i

R

= R`
P

, (10)

or equivalently, a wave function of emergent direction with a separation-dependent width,

h�✓2
P

i
R

⇡ hx̂2
?i

R

/R2 = `
P

/R (11)

A consistent toy model of a quantum algebra to describe geometrical states with these properties is reviewed in the
Appendix.

Quantum Geometrical Information

Quantum mechanics imposes a number of fundamental limits on the precision of position measurements[22]. One
of these[39] enforces a minimum amount of energy associated with measurement of any time interval between events:
the time it takes a quantum system to go from one state to an orthogonal state is greater than or equal to ⇡~/2E,
where E is the expectation value of the energy of the system above the ground state energy. This result has been
used to show[40] that in any volume there is a maximum number of distinguishable events, such that the density of
clocks and signals used to measure their separation, GPS-style, not exceed the density of a black hole. In a spacetime
volume of radius R and duration ⌧ in Planck units, the bound on the number of events is about R⌧ . Since c⌧ ⇡ R for
a covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[40]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
of macroscopic objects.

Planck Di↵raction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, @

µ

@µ = 0. For
waves of frequency ! propagating in a beam— a stationary, monochromatic wave state proportional to e�i!t (x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[@2
x

+ @2
y

� 2i!@
z

] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
for a Planck frequency beam[18], setting ! ⇡ m

P

c2/~:

h�✓2
P

i ⇡ `
P

/R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`

P

of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`
P
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Base a model on a radical assumption:  

quantum geometrical phase entangles with quantum field phase 

==> quantum superpositions of shared spatial displacement  

Displacement on Planck diffraction scale is shared by all fields and 
massive bodies 

3+1D structure is not known but is constrained by general principles 
Covariance between directions ==> strain, rotation and/or shear 
Time projection: “Collapse of wavefunction” on covariant causal 
boundaries 

Unlike all classical geometry since Euclid! 

Character of Exotic Correlations: shared displacement

17



Exotic rotational correlations project twists onto causal boundaries

10

that can be combined into a quantity that scales like ✏
ijk

x
k

`
P

, in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i

(⌧) and x�
i

(⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,
although below we will assume a planar apparatus for simplicity. The functions x+

i

(⌧) and x�
i

(⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (27)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)
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This operator takes discrete eigenvalues:

|x̂|2|li = l(l + 1)`2
P

|li. (A5)

The discrete eigenvalues correspond to classical values of separation R according to:

R2 ⌘ l(l + 1)`2
P

⇡ l2`2
P

(A6)

where l are positive integers, quantum numbers of eigenstates of |x̂|2.
Let l

i

denote eigenvalues of position components projected in direction i. In a state |li of separation number l, the
projected position operator x̂

i

can have eigenvalues in units of `
P

,

l
i

= l, l � 1, . . . , �l, (A7)

giving 2l + 1 possible values. In an eigenstate with a definite value of position in direction i,

x̂
i

|l, l
i

i = l
i

`
P

|l, l
i

i. (A8)

The total number of position eigenstates in a 3-sphere is

N
Q3S

(R) =
lRX

l=1

(2l + 1) = l
R

(l
R

+ 2) = (R/`
P

)2, (A9)

where the last equality applies in the large l limit. Thus, the number of quantum-geometrical position eigenstates
in a volume scales holographically, as the surface area in Planck units. This simple Planckian quantization closely
resembles (but is not exactly the same as) the spectrum of area states more rigorously derived within the framework
of loop quantum gravity (Eq. 17).

Direct calculation (e.g., ref.[63]) also leads to the following product of amplitudes for measurements of either of the
transverse components x̂

j

, with j 6= i:

hl
i

|x̂
j

|l
i

� 1ihl
i

� 1|x̂
j

|l
i

i = (l + l
i

)(l � l
i

+ 1)`2
P

/2, (A10)

again for any i. The left side of equation (A10) can be interpreted as the expected value for the operator

x̂
j

|l
i

� 1ihl
i

� 1|x̂
j

(A11)

for components with j 6= i, in a state |l
i

i of definite x̂
i

. For l >> 1 and l
i

⇡ l, this corresponds to the expected
variance in components of position transverse to separation:

hx̂
j

|l
i

� 1ihl
i

� 1|x̂
j

i ! hx̂2
j

i. (A12)

We can rewrite this as a formula for the variance of the wave function x̂? in any direction transverse to separation,
given by the right hand side of Eq. (A10) in the limit of l >> 1, for l±l

i

= 1 (or indeed for any value of |l�l
i

| << l1/2):

hx̂2
?i = R`

P

. (A13)

This simple result is used here to set the scale of transverse position variance, for example in Eqs. (32) and (41). The
same algebra, with j and ~ in place of x and `

P

, yields a formula for the width of the wave function for transverse
components of standard angular momentum, in the limit of large |j|:

hĵ2
?i = |j|~. (A14)

However, this simple formula does not appear in standard treatments of angular momentum.

Appendix B: Experiment Concept: Superluminally Cross-Correlated, Co-located, Power-Recycled Sagnac
Interferometers

The exotic correlation (Eq. 35) may be detectable using an apparatus similar to the Fermilab Holometer[64],
reconfigured to measure pure rotational modes. The Holometer achieves the sensitivity needed to measure exotic

10

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically. The essential assumptions are just the holographic scaling of
transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

and the total enclosed area is

A0 =
1

2

ˆ
C0

⌧=0
d⌧dA/d⌧ (34)

when integrated over the total circumference C0. Adding the contributions from the two directions in Eq. (32) then
leads to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:

⌅(⌧)/`
P

= ⌅0/`
P

� |dA(⌧)/cd⌧ |, (35)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/C0, (36)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (3).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (37)
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Thus any volume there is a maximum number of distinguishable events, such that the density of clocks and signals
used to measure their separation, GPS-style, not exceed the density of a black hole[37]. In a spacetime volume of
radius R and duration ⌧ in Planck units, the bound on the number of events is about R⌧ . Since c⌧ ⇡ R for a
covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[37]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
of macroscopic objects.

Planck Di↵raction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, @

µ

@µ = 0. For
waves of frequency ! propagating in a beam— a stationary, monochromatic wave state proportional to e�i!t (x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[@2
x

+ @2
y

� 2i!@
z

] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
for a Planck frequency beam[14], setting ! ⇡ m

P

c2/~:

h�✓2
P

i = `
P

/R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`

P

of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`
P

describes directional degrees of freedom. By contrast, in a full resolution 3D space the two directional dimensions on
their own would comprise (R/`

P

)2 degrees of freedom.
Directions in space emerge from the Planck scale in such a way that directional resolution of the emergent space on

any scale is given by Eq. (13). Field states cannot exceed the angular resolution of geometry, so they become strongly
entangled with geometry at a separation where Planck di↵raction matches the resolution of matter fields, ⇡ (m/R)2;
that separation is given by the idealized Chandrasekhar radius, Eq. (8). Note that a black hole of this size still has a
much larger entropy than field states of mass m < m

P

in the same volume.

Planckian Wave Packet Spreading

The directional blurring scale can also be derived from standard wave equations applied to quantum states of wave
packets with Planck frequency[14, 16, 17]. In this estimation, wave functions of world lines of bodies of any mass
spread at the same rate as those of particles of Planck mass. The scale can be estimated starting from the standard
wave function  (x

i

, t) of a massive body in classical position and time. In its classical rest frame, a massive body
obeys a 3+1-dimensional version of the paraxial wave equation (Eq. 12), with propagation in time in place of radial
distance, and rest mass in place of frequency:

[@2
x

+ @2
y

+ @2
z

� 2i(m/~)@
t

] = 0. (14)

Again like a laser beam, spreading of this wave function with time is unavoidable; any solution of duration ⌧ has a
mean variance of position at least as large as

h(r(t + ⌧) � r(t))2i = �2
0(⌧) > ~⌧/2m. (15)

the standard Heisenberg position uncertainty[38–41] for a body measured at times separated by ⌧ . In this wave
picture, it is derived in exact analogy to di↵ractive spreading of a light beam. Here, the sharp preparatory boundary

Orientation of everything inside boundary is 
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Mismatch of “local” and “global” rotation around any observer 
“Twists” of local frame <R relative to distant frame >R 

Planck diffraction scale ~ Planck random walk in transverse position 
Coherent  twists on a covariant causal boundary (~2-sphere) 
Mean rotation vanishes, mean square does not 

Directional fluctuations get smaller on large scales: 

And rotational fluctuations on larger scales get slower:  

Visualize exotic rotational correlations as fluctuations
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Exotic Correlations of Transverse Position and Direction

The arguments just given provide estimates of the amount of information, and the scale of entanglement of geometry
and field states. However, they do not reveal the origin or nature of the entanglement. Based on these estimates
alone it is possible to imagine that the entanglement may be of a very subtle nature. The following arguments
more specifically suggest that new Planckian quantum behavior in large systems may appear as long-range, nonlocal
geometrical correlations of the world lines of massive bodies. They take di↵erent complementary approximations to
the emergent space but all approximately agree on the magnitude and character of exotic Planck correlation, related
to a transverse width for the geometrical position wave function of a geometrical position operator x̂ that depends on
separation R approximately as

⌅(c⌧ = R) ⇡ hx̂2
?i

R

= R`
P

, (10)

or equivalently, a wave function of emergent direction with a separation-dependent width,

h�✓2
P

i
R

⇡ hx̂2
?i

R

/R2 = `
P

/R (11)

A consistent toy model of a quantum algebra to describe geometrical states with these properties is reviewed in the
Appendix.

Quantum Geometrical Information

Quantum mechanics imposes a number of fundamental limits on the precision of position measurements[22]. One
of these[39] enforces a minimum amount of energy associated with measurement of any time interval between events:
the time it takes a quantum system to go from one state to an orthogonal state is greater than or equal to ⇡~/2E,
where E is the expectation value of the energy of the system above the ground state energy. This result has been
used to show[40] that in any volume there is a maximum number of distinguishable events, such that the density of
clocks and signals used to measure their separation, GPS-style, not exceed the density of a black hole. In a spacetime
volume of radius R and duration ⌧ in Planck units, the bound on the number of events is about R⌧ . Since c⌧ ⇡ R for
a covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[40]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
of macroscopic objects.

Planck Di↵raction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, @

µ

@µ = 0. For
waves of frequency ! propagating in a beam— a stationary, monochromatic wave state proportional to e�i!t (x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[@2
x

+ @2
y

� 2i!@
z

] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
for a Planck frequency beam[18], setting ! ⇡ m

P

c2/~:

h�✓2
P

i ⇡ `
P

/R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`

P

of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`
P
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is determined by a choice of world line or timelike observer. In the emergent space, spatial structure is defined by
intersecting light cones from the ends of any interval on the world line, called causal diamonds. World lines, intervals
of proper time, and causal diamonds represent invariant emergent geometrical objects. In the emergent system, there
is no fixed background space to define an inertial frame. From one moment to the next, the situation depends only
on previous relationships. The causal dependences of rotation around a world line are mapped out by the light cones
emanating from each event. The total geometrical state of a system includes entanglement of all of the nested causal
diamonds, and the total variance in position is the sum of variances from the nested diamonds (see Figs. 2, ??).

The e↵ect can be thought of as a quantum di↵erential rotation of space: everything closer than R rotates relative
to everything more distant than R, by a very small amount. It is helpful to visualize the fluctuations as a sum of
coherent discrete transverse spatial displacements, or quantum-gravitational twists of space, associated with discrete
displacements in time. The amplitude corresponds to a Planck scale di↵raction bound on directional resolution in
space, or to a discrete Planck random walk in transverse position. On a null trajectory from a distant source to an
observer, for each Planck step, space experiences a random transverse displacement from the classical trajectory, in
which it shares common with other radial trajectories at the same R. The exotic correlation arises from the sum of
coherent transverse displacement at the 2D boundaries of the nested causal diamonds.

In the quantum states of an interferometer, fields are entangled with geometry. The measured radiation depends
on the phases of light incident on the beamsplitter, which combines geometrical information from macroscopically
di↵erent paths through the space[47–49]. The projection of geometrical quantum states is determined by the true
causal structure of the space, the therefore by the transverse components to the observer’s radial direction. The
relationship between the two is analyzed in next section to compute the e↵ect on an interferometer signal.

Behavior of Exotic Rotational Fluctuations in Large Systems

Like zero point fluctuations of a field excitation in a vacuum, this quantum “motion” represents a quantum system
with a nonzero width of a wave function that has a zero mean. In this picture, the zero point refers to a stationary
direction in the classical nonrotating frame. A quantum relationship with matter out to the cosmic horizon prepares
the global state and defines zero rotation. A zero net rotation state is defined by the classical geometry, but nearby
there is a nonzero quantum variance that depends on distance from an observer. The wave function width is identified
with the exotic correlations and fluctuations.

Directional degrees of freedom are subject to the usual holographic bounds on information, so the above estimates
of directional variance lead to an estimate of the exotic directional correlations and their associated fluctuations, as
shown in Figure (2). The exotic correlation and rotational displacement variance at separation R from an observer
are about

d⌅
R

(⌧)/d⌧ ⇡ (dhx2
?i/dR)(dR/d⌧) ⇡ c`

P

. (22)

The rotational displacement is coherent in all directions from the observer at a constant radial separation defined by
its causal structure— that is, on a 2+1-D tube of spacelike 2-surfaces swept out in time by causal diamonds with
fixed sizes R = c⌧/2. For calculational simplicity, in this paper we focus on results in nearly-flat space relevant for
experiments, but the formulation based on causal diamonds should generalize covariantly to curved spaces. A toy
model of 3D holographic quantum positional states, summarized in Appendix (A), based on the 3D spin algebra,
provides an example of a consistent holographic model of quantum position states in 3D. We use classical space-time
for the time projection, as in Eq. (22). Since the states used are in 3D instead of 4D, time evolution is still treated
heuristically, both here and in the calculation of interferometer response below.

We can describe the e↵ect as statistical fluctuations in rotation of the inertial frame around each axis. An ordinary
rotation about a body at the origin corresponds to transverse components motion dx

i

/dt of a body at x
k

according
to the classical relation,

dx
i

/dt = ✏
ijk

x
k

!
j

, (23)

where !
j

is the rotation rate for component j. In the exotic fluctuations, each component of rotation of a 2-sphere of
radius R has fluctuations with

h!2
i

(R)i ⇡ c2`
P

R�3. (24)

All transverse displacements on a 2-sphere are self consistent according to the classical relation Eq. 23. That is, each
component of rotational fluctuation determines an entangled motion across the whole sphere. In the same way that
spins of quantum particles sent in opposite directions are entangled, in this case, the rotation of all the enclosed world
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Quantum geometry entangles field states on large scales

In this model of  quantum geometry,  
Geometrical correlation ~ Planck diffraction scale 
Field phase is affected by geometric phase  
Propagating field states become less distinct from each 
other at large R than in standard theory 
This effect is not in standard field theory
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field wavefronts in one mode

field wavefronts in another mode

Planck correlation over distance R

Planck length

R1/2



Exotic entanglement resolves conflict of field states 
with gravity on large scales

In-common exotic displacement ~ particle wavelength at 
               

R ~ RC (m) = m-2   in Planck units, 

the Chandrasekhar radius for field states of mass m 

Fewer independent field states: no gravitational catastrophes 

Implements previously ad hoc “IR cutoff” to field theory at R>m-2 

Consistent with particle experiments (Cohen et al. 1999)
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A radical departure from foundations of field theory

Standard  field states:  wave packets made of modes of size R  
describe positions on scale R 

Planck scale correlations entangle field states on scale R 
(in-common displacement)2 ~ R  

The effect is far too small to detect in local particle experiments 

But may affect fields detectably in interferometers 
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Effect of exotic correlations: quantum fields coherently 
displaced by distance ~ R1/2  on scale R 

particle experiments 
probe states with R~ m-1

 



lo
g(
eq
ui
va
le
nt

  p
ar
tic
le

  e
ne
rg
y/

 P
la
nc
k 
m
as
s)

-60

-40

-20

0

20

40

60

log(system size /Planck length)

0 10 20 30 40 50 60

~100 meter size of photon states in 
interferometer

Exotic correlation
R ~ m-2

25

 ~10 attometer precision

An experimental program to study exotic correlations: 
interferometers that measure phase correlations on 
scale ~ R in space and time, with precision ~ R1/2 



Interferometers measure large coherent quantum states

States inside interferometer cavity 
are superpositions of two directions 

A single photon follows two 
separated trajectories 

Exotic entanglement with geometry 
means that quantum fields share a 
geometrical component of path-
dependent phase

Direction and location of 
a photon inside the 
cavity is indeterminate 
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Sagnac Interferometer 

Light path is a closed circuit 

Signal measures classical absolute 
rotation relative to inertial frame 

Rotating apparatus has different light 
path length in opposite directions 

Effect on phase in each segment is 
given by the projected component of 
rotation on light path 

Integral around circuit depends only on 
total area and rotation rate: 

FERMILAB-PUB-

Sagnac Holometer

sagnac holometer

I. SOME NOTES

�t = 4A!/c2 (1)
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e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+
i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 4). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (31)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (32)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (33)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[19, 23], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

General Formula for a Planar Interferometer

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Figs. 4, 5). Assume for simplicity a planar apparatus, and thereby
suppress directional indices for A

i

. The essential assumptions are just the holographic scaling of transverse position
correlations, and the standard projective properties of emergent space-time that relate R and ⌧ . The swept area rate
dA/d⌧ is proportional to separation from the origin at any point on the path, and to the projection of the path on
the transverse direction at that point. Denote the angle between the light path tangent and position vectors by ✓0(⌧).
This angle determines the a�ne mapping and the swept area via

dA/d⌧ = R(⌧) sin ✓0/2, (34)

where R(⌧) = |x
i

(⌧)|. The exotic signal correlation at each ⌧ , apart from a constant o↵set fixed by the boundary
condition determined by global layout of an interferometer, is also fixed by a projection onto the path, in this case of
transverse position variance (Eqs. 30, A13) :

(⌅(⌧) + constant) = h�x2
?i

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (35)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = 2`
P

dA/cd⌧. (36)

For the specific case of a Sagnac interferometer, define the total swept area A±(⌧) as a sum of the rotational components
in the two directions, so that

|dA±/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (37)

and the total physical enclosed area is

A0 =
1

2

ˆ
P0

⌧=0
d⌧dA±/d⌧ (38)

measurement



Michelson’s team in suburban 
Chicago, winter 1924, with 

partial-vacuum pipes of 1000 by 
2000 foot interferometer, 

measuring the rotation of the 
earth with light traveling in two 

directions around a loop

1925ApJ....61..140M

Michelson-Gale  
experiment (1925): 
Measured rotation 

of the Earth

28



Exotic Rotational Correlation in Interferometer Signals

If exotic rotational correlations exist, they create “holographic noise” in 
the signal of any interferometer whose light path encloses an area 

Signal responds to twists in the contained inertial frame, with response 
determined by world lines of mirrors 

Predicted signal correlations depends on the shape of interferometer, 
and  spatial structure of exotic correlations 
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Signal in an interferometer is a time series on 
one world line 

In a (square) Sagnac it depends on events at 
four world lines connected by null trajectories 

The quantum state is delocalized over the 
whole 4-volume (e.g., Caves 1980) 

Photon field state is entangled with geometry 
on this scale

World line of 
beamsplitter
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Interferometer Signal Exotic Correlation Function 

Exotic 3+1D rotational correlations project onto 1D signal correlation 

Statistical observable: expressed as a correlation function of 
differential mirror position, 

Signal correlation function must depend only on the path shape 

3

produce quantum correlations among observable quantities, beyond those of quantum matter.
Quantum correlations have an inverse relation to the information in a system: they vanish in the limit of a

continuous classical system, which has an infinite amount of information. Theoretical extrapolations from standard
theory suggest that quantum gravity limits the amount of information available to a system of matter and geometry,
and therefore, creates new forms of correlation not predicted in standard theory. However, it is not known what form
those correlations take.

Here we consider the hypothesis that quantum-geometrical correlations can be expressed as exotic correlations in
the spatial positions of world lines, as traced by trajectories of massive bodies. These correlations can be distinguished
from standard quantum correlations by precise measurements of positions of bodies in space. They carry significant,
specific and quantitative information about the structure of new physics at the Planck scale.

We have previously considered one class of such measurements, those possible with Michelson interferometers[15–
21]. Here, we consider a related but di↵erent class of possible correlations, associated with rotational modes, or pure
changes of direction in space. In particular, we argue that measurements sensitive to the phase of radiation whose
path encloses a large area may detect correlations due to the imperfect emergence, in a laboratory-scale system, of a
local nonrotating frame from quantum relationships of Planck scale elements.

In an interferometer, a quantum-geometrical correlation is ultimately measured as the time domain correlation (or
equivalently, its frequency-domain transform) of an observable x(t), with dimension of length:

⌅(⌧) ⌘ hx(t)x(t + ⌧)i
t

. (1)

The quantity x is measured from a light intensity that depends on the phase di↵erence between beams that travel
through an arrangement of mirrors in space. It characterizes the departure from a perfectly static, classical, continuous
geometry. A variety of estimates reviewed below suggest that quantum geometry in a system of size c⌧ produces exotic
correlations in position with magnitude roughly

⌅(⌧)/c⌧ ⇡ `
P

, (2)

where `
P

=
p

~G/c3 = 1.616 ⇥ 10�35 m denotes the Planck length. They represent a measure of the (inverse of
the) information density in the geometry. We refer to correlations of this magnitude as “exotic” Planck correlations
because they are not produced in standard classical geometry. Experiments with interferometers— in particular,
the Fermilab Holometer[26, 27]— have shown that it is possible to measure position correlations with instrumental
metrology at better than the Planck sensitivity in Eq. (2).

Such experiments can in principle probe Planck scale quantum degrees of freedom [15–22]. A signal is produced
by light interference from a system of mirrors in a specific spatial arrangment. The time correlation of the signal, as
in Eq. (1), depends on the detailed spatial layout of the apparatus, and the detailed character of the exotic 3+1 D
position correlations. An experimental program with a variety of configurations can map out the structure of Planck
scale quantum correlations and their relationship with properties of matter fields.

The projection operators for a given apparatus are not calculable in standard theory, since they depend on a
phenomenology for a still-unknown theory of quantum geometry. On the other hand it is often still possible to compute
the forms of correlation from the symmetries of the apparatus in the emergent system, that is, the arrangment of
mirrors in space, and to make quantitative tests of specific hypotheses about the geometrical correlations. These
hypotheses necessarily lay beyond the framework of standard theory, but provide theoretical estimates of the density
and character of information in a space-time system that can be compared with the magnitude and character of
the correlations in data. In the following sections of this paper, we compute new, specific manifestations of exotic
correlation associated with rotation and emergent direction. First however, we review estimates of the magnitude of
exotic correlations from extrapolations of well tested physics.

Gravitational Bounds on Matter Quantum Degrees of Freedom

A classical geometry is a continuous system, with an infinite density of position information. Significant deviations
from this approximation are predicted at the Planck scale. A variety of theoretical estimates suggest that exotic
correlations, originating from Planck scale quantum geometry, may have a magnitude in large systems that corresponds
to position displacements much larger than the Planck length. Those estimates are reviewed here: first, general
bounds on the density of information, and then, more specific indications that these should manifest in observable
exotic position and direction correlations.
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Signal correlation from projection of 
exotic rotational correlations onto 
interferometer light path
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that can be combined into a quantity that scales like ✏
ijk

x
k

`
P

, in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i

(⌧) and x�
i

(⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,
although below we will assume a planar apparatus for simplicity. The functions x+

i

(⌧) and x�
i

(⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (27)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)
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This operator takes discrete eigenvalues:

|x̂|2|li = l(l + 1)`2
P

|li. (A5)

The discrete eigenvalues correspond to classical values of separation R according to:

R2 ⌘ l(l + 1)`2
P

⇡ l2`2
P

(A6)

where l are positive integers, quantum numbers of eigenstates of |x̂|2.
Let l

i

denote eigenvalues of position components projected in direction i. In a state |li of separation number l, the
projected position operator x̂

i

can have eigenvalues in units of `
P

,

l
i

= l, l � 1, . . . , �l, (A7)

giving 2l + 1 possible values. In an eigenstate with a definite value of position in direction i,

x̂
i

|l, l
i

i = l
i

`
P

|l, l
i

i. (A8)

The total number of position eigenstates in a 3-sphere is

N
Q3S

(R) =
lRX

l=1

(2l + 1) = l
R

(l
R

+ 2) = (R/`
P

)2, (A9)

where the last equality applies in the large l limit. Thus, the number of quantum-geometrical position eigenstates
in a volume scales holographically, as the surface area in Planck units. This simple Planckian quantization closely
resembles (but is not exactly the same as) the spectrum of area states more rigorously derived within the framework
of loop quantum gravity (Eq. 17).

Direct calculation (e.g., ref.[63]) also leads to the following product of amplitudes for measurements of either of the
transverse components x̂

j

, with j 6= i:

hl
i

|x̂
j

|l
i

� 1ihl
i

� 1|x̂
j

|l
i

i = (l + l
i

)(l � l
i

+ 1)`2
P

/2, (A10)

again for any i. The left side of equation (A10) can be interpreted as the expected value for the operator

x̂
j

|l
i

� 1ihl
i

� 1|x̂
j

(A11)

for components with j 6= i, in a state |l
i

i of definite x̂
i

. For l >> 1 and l
i

⇡ l, this corresponds to the expected
variance in components of position transverse to separation:

hx̂
j

|l
i

� 1ihl
i

� 1|x̂
j

i ! hx̂2
j

i. (A12)

We can rewrite this as a formula for the variance of the wave function x̂? in any direction transverse to separation,
given by the right hand side of Eq. (A10) in the limit of l >> 1, for l±l

i

= 1 (or indeed for any value of |l�l
i

| << l1/2):

hx̂2
?i = R`

P

. (A13)

This simple result is used here to set the scale of transverse position variance, for example in Eqs. (32) and (41). The
same algebra, with j and ~ in place of x and `

P

, yields a formula for the width of the wave function for transverse
components of standard angular momentum, in the limit of large |j|:

hĵ2
?i = |j|~. (A14)

However, this simple formula does not appear in standard treatments of angular momentum.

Appendix B: Experiment Concept: Superluminally Cross-Correlated, Co-located, Power-Recycled Sagnac
Interferometers

The exotic correlation (Eq. 35) may be detectable using an apparatus similar to the Fermilab Holometer[64],
reconfigured to measure pure rotational modes. The Holometer achieves the sensitivity needed to measure exotic
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These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically. The essential assumptions are just the holographic scaling of
transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

and the total enclosed area is

A0 =
1

2

ˆ
C0

⌧=0
d⌧dA/d⌧ (34)

when integrated over the total circumference C0. Adding the contributions from the two directions in Eq. (32) then
leads to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:

⌅(⌧)/`
P

= ⌅0/`
P

� |dA(⌧)/cd⌧ |, (35)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/C0, (36)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (3).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (37)
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Thus any volume there is a maximum number of distinguishable events, such that the density of clocks and signals
used to measure their separation, GPS-style, not exceed the density of a black hole[37]. In a spacetime volume of
radius R and duration ⌧ in Planck units, the bound on the number of events is about R⌧ . Since c⌧ ⇡ R for a
covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[37]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
of macroscopic objects.

Planck Di↵raction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, @

µ

@µ = 0. For
waves of frequency ! propagating in a beam— a stationary, monochromatic wave state proportional to e�i!t (x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[@2
x

+ @2
y

� 2i!@
z

] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
for a Planck frequency beam[14], setting ! ⇡ m

P

c2/~:

h�✓2
P

i = `
P

/R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`

P

of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`
P

describes directional degrees of freedom. By contrast, in a full resolution 3D space the two directional dimensions on
their own would comprise (R/`

P

)2 degrees of freedom.
Directions in space emerge from the Planck scale in such a way that directional resolution of the emergent space on

any scale is given by Eq. (13). Field states cannot exceed the angular resolution of geometry, so they become strongly
entangled with geometry at a separation where Planck di↵raction matches the resolution of matter fields, ⇡ (m/R)2;
that separation is given by the idealized Chandrasekhar radius, Eq. (8). Note that a black hole of this size still has a
much larger entropy than field states of mass m < m

P

in the same volume.

Planckian Wave Packet Spreading

The directional blurring scale can also be derived from standard wave equations applied to quantum states of wave
packets with Planck frequency[14, 16, 17]. In this estimation, wave functions of world lines of bodies of any mass
spread at the same rate as those of particles of Planck mass. The scale can be estimated starting from the standard
wave function  (x

i

, t) of a massive body in classical position and time. In its classical rest frame, a massive body
obeys a 3+1-dimensional version of the paraxial wave equation (Eq. 12), with propagation in time in place of radial
distance, and rest mass in place of frequency:

[@2
x

+ @2
y

+ @2
z

� 2i(m/~)@
t

] = 0. (14)

Again like a laser beam, spreading of this wave function with time is unavoidable; any solution of duration ⌧ has a
mean variance of position at least as large as

h(r(t + ⌧) � r(t))2i = �2
0(⌧) > ~⌧/2m. (15)

the standard Heisenberg position uncertainty[38–41] for a body measured at times separated by ⌧ . In this wave
picture, it is derived in exact analogy to di↵ractive spreading of a light beam. Here, the sharp preparatory boundary
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Exotic signal correlation function expressed as swept area  

For any shape of circuit, correlation depends only on one function 
of time lag: 

A = area swept out by the light path, as a function of time 

Projects exotic 4D rotational fluctuations onto time domain 
measured in an apparatus 
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e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+
i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 4). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (31)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (32)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (33)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[19, 23], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

General Formula for a Planar Interferometer

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Figs. 4, 5). Assume for simplicity a planar apparatus, and thereby
suppress directional indices for A

i

. The essential assumptions are just the holographic scaling of transverse position
correlations, and the standard projective properties of emergent space-time that relate R and ⌧ . The swept area rate
dA/d⌧ is proportional to separation from the origin at any point on the path, and to the projection of the path on
the transverse direction at that point. Denote the angle between the light path tangent and position vectors by ✓0(⌧).
This angle determines the a�ne mapping and the swept area via

dA/d⌧ = R(⌧) sin ✓0/2, (34)

where R(⌧) = |x
i

(⌧)|. The exotic signal correlation at each ⌧ , apart from a constant o↵set fixed by the boundary
condition determined by global layout of an interferometer, is also fixed by a projection onto the path, in this case of
transverse position variance (Eqs. 30, A13) :

(⌅(⌧) + constant) = h�x2
?i

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (35)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = 2`
P

dA/cd⌧. (36)

For the specific case of a Sagnac interferometer, define the total swept area A±(⌧) as a sum of the rotational components
in the two directions, so that

|dA±/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (37)

and the total physical enclosed area is

A0 =
1

2

ˆ
P0

⌧=0
d⌧dA±/d⌧ (38)
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These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically. The essential assumptions are just the holographic scaling of
transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

and the total enclosed area is

A0 =
1

2

ˆ
C0

⌧=0
d⌧dA/d⌧ (34)

when integrated over the total circumference C0. Adding the contributions from the two directions in Eq. (32) then
leads to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:

⌅(⌧)/`
P

= ⌅0/`
P

� |dA(⌧)/cd⌧ |, (35)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/C0, (36)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (3).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (37)
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Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that
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and the total enclosed area is
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when integrated over the total circumference C0. Adding the contributions from the two directions in Eq. (32) then
leads to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:
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where the correlation at zero lag,
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gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (3).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (37)
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e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+
i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 4). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (31)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (32)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (33)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[19, 23], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

General Formula for a Planar Interferometer

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Figs. 4, 5). Assume for simplicity a planar apparatus, and thereby
suppress directional indices for A

i

. The essential assumptions are just the holographic scaling of transverse position
correlations, and the standard projective properties of emergent space-time that relate R and ⌧ . The swept area rate
dA/d⌧ is proportional to separation from the origin at any point on the path, and to the projection of the path on
the transverse direction at that point. Denote the angle between the light path tangent and position vectors by ✓0(⌧).
This angle determines the a�ne mapping and the swept area via

dA/d⌧ = R(⌧) sin ✓0/2, (34)

where R(⌧) = |x
i

(⌧)|. The exotic signal correlation at each ⌧ , apart from a constant o↵set fixed by the boundary
condition determined by global layout of an interferometer, is also fixed by a projection onto the path, in this case of
transverse position variance (Eqs. 30, A13) :

(⌅(⌧) + constant) = h�x2
?i

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (35)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = 2`
P

dA/cd⌧. (36)

For the specific case of a Sagnac interferometer, define the total swept area A±(⌧) as a sum of the rotational components
in the two directions, so that

|dA±/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (37)

and the total physical enclosed area is

A0 =
1

2

ˆ
P0

⌧=0
d⌧dA±/d⌧ (38)
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ijk
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This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[19, 23], which is not sensitive to the rotational terms measured in
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. The essential assumptions are just the holographic scaling of transverse position
correlations, and the standard projective properties of emergent space-time that relate R and ⌧ . The swept area rate
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the transverse direction at that point. Denote the angle between the light path tangent and position vectors by ✓0(⌧).
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condition determined by global layout of an interferometer, is also fixed by a projection onto the path, in this case of
transverse position variance (Eqs. 30, A13) :
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Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by
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P
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For the specific case of a Sagnac interferometer, define the total swept area A±(⌧) as a sum of the rotational components
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and the total physical enclosed area is

A0 =
1

2

ˆ
P0

⌧=0
d⌧dA±/d⌧ (38)

16

when integrated over the total perimeter P0.
Adding the contributions from the two directions in Eq. (36) then leads to the following formula for exotic correlation

in a planar Sagnac interferometer of any shape:

⌅(⌧)/`
P

= ⌅0/`
P

� |dA±(⌧)/cd⌧ |, (39)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/P0, (40)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > P0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (6).

Classical Sagnac E↵ect

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
!0, relative to the local nonrotating inertial frame, is

c�t = 4A0!0/c. (41)

This formula can be derived by summing the extra contributions from each straight photon path segment around
a circuit. Let �t denote the “extra” propagation time for a photon— the extra time to the next reflection, say— in a
small interval of a straight path, due to the fact that the apparatus is rotating. It is related to the transverse rotation
d�x? = R!0d⌧ in the same interval by

cd�t/d�x? = sin ✓0, (42)

using the same notation as before (Fig 5). Combining with the swept area (Eq. 34), the total time lab around a
circuit is

c

ˆ
d�t = 2!0A0/c. (43)

The total Sagnac e↵ect is twice this amount because it is the total di↵erence between opposite directions.
The exotic e↵ect produces the tiny fluctuations around this value, due to the imperfect definition of the frame. The

exotic correlation amplitude for a Sagnac device on any scale (Eq. 40), which is a mean square displacement, is equal
to the classical displacement for an apparatus rotating at angular velocity !0 = c/2P0, times the Planck length. Once
again, the exotic phase displacement resembles approximately the value of displacement a Planckian random walk,
but with symmtries and projection factors appropriate to rotation.

Generalization, Experiment Design, Exotic Nonlocal Correlations

The general formula (Eq. 39) respects the symmetries expected for an emergent geometry, and for a Sagnac
apparatus. It appears to have the correct spatial scaling and transformation properties to describe the 1D time
domain correlation for a planar interferometer of any shape. It also makes physical sense; for example, in sections
of the circuit where light is not interacting with matter, the path is straight, so that |dA�(⌧)/cd⌧ | is constant for
corresponding intervals of ⌧ . Thus as expected, the correlation is constant over those intervals; the phase of radiation
is not a↵ected by trajectories of emergent world lines it does not interact with. At reflections, the light path changes
directions and the correlation changes value discontinuously, as expected if the matter fields associated with the
positions of the mirrors are directionally entangled with emergent geometry.

The Sagnac layout is not unique in displaying an e↵ect; an enclosed area and nonzero ⌅0 can be achieved for
Mach-Zender, or bent Michelson layouts. In all of these cases, similar formulas can be derived for the correlation,
based on swept out area from the beamsplitter.

The nonlocal character of the exotic correlations provides opportunities for experiments to distinguish them from
ordinary sources of environmental position noise. For example, two interferometers very close to each other should
be almost entirely entangled, and show a cross correlation almost the same as their individual ⌅(⌧). However, if
one of them has a layout with zero area, say from folding the arms back to the beamsplitter, the exotic correlation
disappears. The formalism here should generalize to computations of cross correlations between interferometers due
to entanglement, based on overlap between their swept areas.
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We do not have a complete theory of the apparatus projection P
ijk

for the emergent 3+1 D system, but we can
guess at relations between the 3D correlations and the 1D correlation in a Sagnac signal, based on the antisymmetric
character of rotational motion. The approach is to define geometric quantities in the rest frame of the apparatus
that can be combined into a quantity that scales like ✏

ijk

x
k

`
P

, in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions
and the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along
the path in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the
beamsplitter, by x+

i

(⌧) and x�
i

(⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D
spatial indices, although below we will assume a planar apparatus for simplicity. The functions x+

i

(⌧) and x�
i

(⌧) can
be visualized as the trajectories of “tracer photons” in each direction around the circuit; they map positions on the
circuit in 3-space to points on an interval on the real line, (�P0, +P0), where P0 denotes the perimeter of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 4). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (31)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (32)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (33)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[7, 19], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 4). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (34)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 30, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (35)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (36)

Projection of 3+1D 
correlation onto 1D signal 

Determined by the path of 
light at the corresponding 
affine time lag from the 
beamsplitter, in the rest 
frame 

34

Projection onto single time
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General Formulae for Exotic Rotational Correlations in a Planar Interferometer

The exotic correlation amplitude in the signal is the projection of the exotic transverse position correlation onto the
apparatus. The relations between dA

i

(⌧)/d⌧ and dx
j

/d⌧ provide an intuitive way to project the exotic correlation
✏
ijk

x
k

`
P

on each hypersurface to form an invariant function of ⌧ alone.
The projection can be visualized geometrically (Fig. 3). Assume for simplicity a planar apparatus, and thereby

suppress directional indices for A
i

. The essential assumptions are just the holographic scaling of transverse position
correlations, and the standard geometrical relations between R and ⌧ . The swept area rate dA/d⌧ is proportional to
separation from the origin at any point on the path, and to the projection of the path on the transverse direction at
that point. Denote the angle between the light path tangent and position vectors by ✓0(⌧). This angle determines the
a�ne mapping and the swept area via

dA/d⌧ = R(⌧) sin ✓0/2, (27)

where R(⌧) = |x
i

(⌧)|. The derivative of the exotic signal correlation at each ⌧ is the projection of the exotic 3D
transverse position variance (Eqs. 25, A13) onto the light path:

d⌅(⌧)/d⌧ = h�x2
?i

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0 = 2`
P

dA/d⌧ . (28)

Equation (28) applies separately to each arm or leg of an interferometer of any shape. The full correlation function
depends on the overall layout. The entire enclosed area A0 is given by integrating Eq. (28) over a time T0. The zero
lag correlation is an average over the travel time T0:

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/T0, (29)

which gives the total mean square variance in a single arm from the exotic correlation in length units. The correlation
always vanishes for |c⌧ | > T0. The mean rotation vanishes in the classical limit of a long time average.

The general formula (Eq. 28) respects the symmetries expected for an emergent geometry. It has the correct spatial
scaling and transformation properties to describe the 1D time domain correlation for a planar interferometer of any
shape. It also makes physical sense; for example, in sections of the circuit where light is not interacting with matter,
the path is straight, so that dA(⌧)/cd⌧ is constant for corresponding intervals of ⌧ . At reflections where the rotational
position of the mirror a↵ects the phase of the light (that is, where the mirror surface normal is not in the radial
direction), the signal correlation changes slope discontinuously, as expected from exotic correlations in the positions
of the mirrors.

The nonlocal character of the exotic correlations provides opportunities for experiments to distinguish them from
ordinary sources of environmental position noise. For example, two interferometers close to each other, with over-
lapping areas, should be almost entirely entangled, and show a cross correlation almost the same as their individual
⌅(⌧). However, if one of them has a layout with zero area, say from folding the arms back to the beamsplitter,
the exotic correlation disappears. The argument given here should generalize to computations of cross correlations
between interferometers due to entanglement, given by the synchronous overlap between their swept areas.

Classical Sagnac E↵ect

It is interesting to compare the exotic correlations with a similar derivation of the classical Sagnac e↵ect. For an
apparatus of any shape, the phase shift in length units between light going in two directions around a circuit rotating
with angular velocity !0, relative to the local nonrotating inertial frame, is

c�t = 4A0!0/c. (30)

This formula can be derived by summing the extra contributions from each straight photon path segment around
a circuit. Let �t denote the “extra” propagation time for a photon— the extra time to the next reflection— in a
small interval of a straight path, due to the fact that the apparatus is rotating. It is related to the transverse rotation
d�x? = R!0d⌧ in the same interval by

cd�t/d�x? = sin ✓0, (31)

using the notation shown in Fig (3). Combining with the swept area (Eq. 27), the net time lag around a circuit is

c

ˆ
d�t = 2!0A0/c. (32)



A0= total enclosed area 
T0= arm length 
lP= Planck length 

Valid for any shape of light path 
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e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+
i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 4). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (31)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (32)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (33)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[19, 23], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

General Formula for a Planar Interferometer

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Figs. 4, 5). Assume for simplicity a planar apparatus, and thereby
suppress directional indices for A

i

. The essential assumptions are just the holographic scaling of transverse position
correlations, and the standard projective properties of emergent space-time that relate R and ⌧ . The swept area rate
dA/d⌧ is proportional to separation from the origin at any point on the path, and to the projection of the path on
the transverse direction at that point. Denote the angle between the light path tangent and position vectors by ✓0(⌧).
This angle determines the a�ne mapping and the swept area via

dA/d⌧ = R(⌧) sin ✓0/2, (34)

where R(⌧) = |x
i

(⌧)|. The exotic signal correlation at each ⌧ , apart from a constant o↵set fixed by the boundary
condition determined by global layout of an interferometer, is also fixed by a projection onto the path, in this case of
transverse position variance (Eqs. 30, A13) :

(⌅(⌧) + constant) = h�x2
?i

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (35)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = 2`
P

dA/cd⌧. (36)

For the specific case of a Sagnac interferometer, define the total swept area A±(⌧) as a sum of the rotational components
in the two directions, so that

|dA±/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (37)

and the total physical enclosed area is

A0 =
1

2

ˆ
P0

⌧=0
d⌧dA±/d⌧ (38)

35

11

beamsplitter

path of light

10

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA�
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically. The essential assumptions are just the holographic scaling of
transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

and the total enclosed area is

A0 =
1

2

ˆ
C0

⌧=0
d⌧dA/d⌧ (34)

when integrated over the total circumference C0. Adding the contributions from the two directions in Eq. (32) then
leads to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:

⌅(⌧)/`
P

= ⌅0/`
P

� |dA(⌧)/cd⌧ |, (35)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/C0, (36)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (3).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (37)
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These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:
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This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.
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by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :
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R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

and the total enclosed area is

A0 =
1

2

ˆ
C0

⌧=0
d⌧dA/d⌧ (34)

when integrated over the total circumference C0. Adding the contributions from the two directions in Eq. (32) then
leads to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:

⌅(⌧)/`
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= ⌅0/`
P

� |dA(⌧)/cd⌧ |, (35)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/C0, (36)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > C0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (3).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (37)
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e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+
i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 4). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (31)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (32)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA�
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (33)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[19, 23], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

General Formula for a Planar Interferometer

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Figs. 4, 5). Assume for simplicity a planar apparatus, and thereby
suppress directional indices for A

i

. The essential assumptions are just the holographic scaling of transverse position
correlations, and the standard projective properties of emergent space-time that relate R and ⌧ . The swept area rate
dA/d⌧ is proportional to separation from the origin at any point on the path, and to the projection of the path on
the transverse direction at that point. Denote the angle between the light path tangent and position vectors by ✓0(⌧).
This angle determines the a�ne mapping and the swept area via

dA/d⌧ = R(⌧) sin ✓0/2, (34)

where R(⌧) = |x
i

(⌧)|. The exotic signal correlation at each ⌧ , apart from a constant o↵set fixed by the boundary
condition determined by global layout of an interferometer, is also fixed by a projection onto the path, in this case of
transverse position variance (Eqs. 30, A13) :

(⌅(⌧) + constant) = h�x2
?i

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (35)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = 2`
P

dA/cd⌧. (36)

For the specific case of a Sagnac interferometer, define the total swept area A±(⌧) as a sum of the rotational components
in the two directions, so that

|dA±/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (37)

and the total physical enclosed area is

A0 =
1

2

ˆ
P0

⌧=0
d⌧dA±/d⌧ (38)
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as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 4). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (31)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (32)
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This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (31) and (32). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[19, 23], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

General Formula for a Planar Interferometer

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±
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The projection can be visualized geometrically (Figs. 4, 5). Assume for simplicity a planar apparatus, and thereby
suppress directional indices for A

i

. The essential assumptions are just the holographic scaling of transverse position
correlations, and the standard projective properties of emergent space-time that relate R and ⌧ . The swept area rate
dA/d⌧ is proportional to separation from the origin at any point on the path, and to the projection of the path on
the transverse direction at that point. Denote the angle between the light path tangent and position vectors by ✓0(⌧).
This angle determines the a�ne mapping and the swept area via

dA/d⌧ = R(⌧) sin ✓0/2, (34)

where R(⌧) = |x
i

(⌧)|. The exotic signal correlation at each ⌧ , apart from a constant o↵set fixed by the boundary
condition determined by global layout of an interferometer, is also fixed by a projection onto the path, in this case of
transverse position variance (Eqs. 30, A13) :

(⌅(⌧) + constant) = h�x2
?i

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (35)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = 2`
P

dA/cd⌧. (36)

For the specific case of a Sagnac interferometer, define the total swept area A±(⌧) as a sum of the rotational components
in the two directions, so that

|dA±/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (37)

and the total physical enclosed area is

A0 =
1

2

ˆ
P0

⌧=0
d⌧dA±/d⌧ (38)
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when integrated over the total perimeter P0.
Adding the contributions from the two directions in Eq. (36) then leads to the following formula for exotic correlation

in a planar Sagnac interferometer of any shape:

⌅(⌧)/`
P

= ⌅0/`
P

� |dA±(⌧)/cd⌧ |, (39)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/P0, (40)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > P0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (6).

Classical Sagnac E↵ect

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
!0, relative to the local nonrotating inertial frame, is

c�t = 4A0!0/c. (41)

This formula can be derived by summing the extra contributions from each straight photon path segment around
a circuit. Let �t denote the “extra” propagation time for a photon— the extra time to the next reflection, say— in a
small interval of a straight path, due to the fact that the apparatus is rotating. It is related to the transverse rotation
d�x? = R!0d⌧ in the same interval by

cd�t/d�x? = sin ✓0, (42)

using the same notation as before (Fig 5). Combining with the swept area (Eq. 34), the total time lab around a
circuit is

c

ˆ
d�t = 2!0A0/c. (43)

The total Sagnac e↵ect is twice this amount because it is the total di↵erence between opposite directions.
The exotic e↵ect produces the tiny fluctuations around this value, due to the imperfect definition of the frame. The

exotic correlation amplitude for a Sagnac device on any scale (Eq. 40), which is a mean square displacement, is equal
to the classical displacement for an apparatus rotating at angular velocity !0 = c/2P0, times the Planck length. Once
again, the exotic phase displacement resembles approximately the value of displacement a Planckian random walk,
but with symmtries and projection factors appropriate to rotation.

Generalization, Experiment Design, Exotic Nonlocal Correlations

The general formula (Eq. 39) respects the symmetries expected for an emergent geometry, and for a Sagnac
apparatus. It appears to have the correct spatial scaling and transformation properties to describe the 1D time
domain correlation for a planar interferometer of any shape. It also makes physical sense; for example, in sections
of the circuit where light is not interacting with matter, the path is straight, so that |dA�(⌧)/cd⌧ | is constant for
corresponding intervals of ⌧ . Thus as expected, the correlation is constant over those intervals; the phase of radiation
is not a↵ected by trajectories of emergent world lines it does not interact with. At reflections, the light path changes
directions and the correlation changes value discontinuously, as expected if the matter fields associated with the
positions of the mirrors are directionally entangled with emergent geometry.

The Sagnac layout is not unique in displaying an e↵ect; an enclosed area and nonzero ⌅0 can be achieved for
Mach-Zender, or bent Michelson layouts. In all of these cases, similar formulas can be derived for the correlation,
based on swept out area from the beamsplitter.

The nonlocal character of the exotic correlations provides opportunities for experiments to distinguish them from
ordinary sources of environmental position noise. For example, two interferometers very close to each other should
be almost entirely entangled, and show a cross correlation almost the same as their individual ⌅(⌧). However, if
one of them has a layout with zero area, say from folding the arms back to the beamsplitter, the exotic correlation
disappears. The formalism here should generalize to computations of cross correlations between interferometers due
to entanglement, based on overlap between their swept areas.

FIG. 3. Definitions of geometrical quantities for a straight portion of the light path in any planar interferometer in the rest
frame of the beamsplitter.

path on the transverse direction at that point. Denote the angle between the light path tangent and position vectors
by ✓0(⌧). This angle determines the a�ne mapping and the swept area via

dA/cd⌧ = R(⌧) sin ✓0/2, (24)

where R(⌧) = |x
i

(⌧)|. The exotic signal correlation at each ⌧ depends on the projection of an exotic transverse
position variance (e.g., Eq. A12) onto light phase at the corresponding segment of the light path:

h�x2
?i

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0 = 2`
P

dA/cd⌧ . (25)

The measured signal correlation should thus depend on the light path via `
P

dA/cd⌧ . For a path length (or inverse
free spectral range) T0 and integrated area A0, a dimensional estimate of the mean square signal variance from exotic
correlation is then

⌅0 ⌘ ⌅(⌧ = 0) ⇡ A0`P

/cT0 . (26)

A robust conclusion is that there is a nonzero e↵ect only if this quantity does not vanish, that is, if the light path
encompasses a nonzero area.

The nonlocal character of the exotic correlations provides opportunities for experiments to distinguish them from
ordinary sources of environmental position noise. For example, two interferometers close to each other, with over-
lapping areas, should be almost entirely entangled, and show a cross correlation almost the same as their individual
⌅(⌧). In a layout with zero area (as in the current configuration of the Fermilab Holometer[25]), the exotic correlation
disappears. The argument given here should generalize to computations of cross correlations between interferometers
due to entanglement, given by the synchronous overlap between their swept areas.

Classical Sagnac E↵ect

It is interesting to compare the exotic correlations with a similar derivation of the classical Sagnac e↵ect. For an
apparatus of any shape, the phase shift in length units between light going in two directions around a circuit rotating
with angular velocity !0, relative to the local nonrotating inertial frame, is

c�t = 4A0!0/c. (27)

This formula can be derived by summing the extra contributions from each straight photon path segment around
a circuit. Let �t denote the “extra” propagation time for a photon— the extra time to the next reflection— in a
small interval of a straight path, due to the fact that the apparatus is rotating. It is related to the transverse rotation
d�x? = R!0d⌧ in the same interval by

cd�t/d�x? = sin ✓0, (28)

http://arxiv.org/abs/1509.07997


Design Features of Experiments 

Universal spectrum 
Depends only on Planck scale 
Known dependence on layout of the interferometer 

Path must enclose an area to show rotational fluctuations 
No effect from radial propagation 

Cross Correlation 
Twists are the same for different instruments that measure the 
same 4-volume  
Null configurations can be used to control for environment 

Noise power is at high frequencies ~  free spectral range 
Optimal experiment measures superluminal correlation 
Time sampling and correlation at high frequency
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 An experiment that studies quantum geometry:  

the Fermilab Holometer
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The Fermilab Holometer as currently configured

Two collocated Michelson interferometers with cross correlated signals 
~ trillions of independent measurements 
sensitive to well below Planck spectral density 2

FIG. 1: Schematic of the two co-located interferometers and
associated data acquisition channels. The two devices are
optically and electrically isolated to eliminate cross-talk.

the device using a 1000 ppm transmission mirror. The in-
sertion of this input coupling mirror forms a Fabry-Perot
cavity with free spectral range FSR ⇡ 3.8 MHz deter-
mined by the common arm length (L

1

+L

2

)/2. The laser
is frequency-locked to the instantaneous cavity frequency
via the Pound-Drever-Hall (PDH) technique [14, 15] to
achieve a typical power build-up from the injected 1.1 W
laser power to intracavity power P

BS

⇡ 2.2 kW. The cav-
ity with 650 Hz transmission bandwidth also serves to fil-
ter higher frequency amplitude and phase noise present
on the incident laser beam.

To produce a linear response to di↵erential length
perturbations �X, each interferometer is operated at a
DARM o↵set of around 1 nm from a dark fringe. A dig-
ital control system monitors fluctuations in the output
light and feeds back di↵erential signals to piezo-electric
actuated end mirror mounts to hold the fringe o↵set
to better than 0.5 Å RMS, thus maintaining a stable
operating point. At this fringe o↵set, around 50 ppm
of signal-bearing interference light appears at the anti-
symmetric port, as measured relative to the intracav-
ity power. This value is chosen to balance the interfer-
ence fringe light with the the contrast defect light leakage
✏

cd

⇡ 50 ppm. This non-interfering light carries no signal
but contributes shot noise variance.

The shot-noise-limited displacement sensitivity is

PSDshot

�X = (�/4⇡)2 · 2E�

P

BS

(2)

where E� = hc/� is the energy per photon. Tak-
ing account of detection ine�ciencies and the degrada-
tion due to the contrast defect light, the DARM sen-
sitivity given by the 2 kW of photon power is around
(2.5⇥10�18 m/

p
Hz)2; this value is confirmed by cali-

bration measurements as summarized below. To reach

the predicted cHN power which is smaller by more than
five orders of magnitude from the instantaneous sensi-
tivity, the signals from the two interferometers are cross-
correlated and averaged. This paper reports on 145 hours
of data constituting N > 2⇥108 independent spectra
in each interferometer which are used to achieve a

p
N

improvement in sensitivity to correlated sub-shot-noise
spectral power. The broadband nature of the predicted
cHN allows further sensitivity improvement by searching
for signal power over 2000 resolved frequency bins.
The success of the experiment requires low instrumen-

tal correlation between the two interferometers and re-
quires nearly complete independence of the two devices,
despite sharing an experimental hall. Each interferom-
eter is enclosed in its own vacuum system, and the in-
jection and control systems are operated on separate op-
tics tables and electronics racks. The digitizers for the
two instruments are isolated and independently synchro-
nized to GPS. They communicate with the realtime spec-
trum processing computer only through optical fiber (see
Fig. 1).
Data acquisition and methodology—Because of the
contrast defect light leakage, each interferometer has 200
mW output power which provides the desired shot-noise-
limited sensitivity. However, the large dynamic range
between the DC power and the shot noise level presents
challenges for linear detection. The output power is split
by a secondary beam splitter to divide it between two
custom low transimpedance photoreceivers based on high
linearity, 2 mm InGaAs photodiodes. Each detector is
demonstrated to achieve high linearity with photocur-
rents up to 130 mA. A low gain DC amplification chan-
nel samples the photocurrent and has flat response from
DC-80 kHz. A high gain, transimpedance-based, AC-
coupled radiofrequency (RF) channel has full gain be-
tween 900 kHz-5 MHz and operates up to 20 MHz.
The two interferometers together thus have four RF

output streams digitized at 50 MHz sample rate with 15
bits. These four channels along with an additional four
auxiliary monitor channels are Fast Fourier Transformed
in real time with 381 Hz frequency resolution. An upper-
triangular 8⇥ 8 cross-spectrum matrix is computed. To
reduce the data rate, measurements of these 36 spectra
are averaged over 700 sequential spectral measurements
(around 1.8 s) before being stored. The remaining aver-
aging is performed in o✏ine analysis.
Isolation of the two interferometers is established by

measurement; as described below, the auxiliary channels
are used to determine the transfer function of known
noise sources into the interferometer output, to reduce
the noise coupling, and to monitor the possible remain-
ing noise leakage in situ. During the accumulation for
this result the auxiliary channels are set at various times
to monitor the PDH laser phase noise, the laser intensity
noise, and loop antennas detecting the local RF environ-
ment.
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First view of 2 interferometer crossFirst view of 2 interferometer cross
Measured Spectrum in the Fermilab Holometer 

http://arxiv.org/abs/1512.01216
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Fully Integrated Cross SpectrumFully Integrated Cross Spectrum

Model amplitude 
Sets weighting
Function

Shapes statistical
power

Fully Accumulated
Over Bandwidth

Done as integral
To observe 
Narrowband vs.
Broadband 
Contributions

arXiv:1512.01216

Holometer Integrated Cross Spectrum  
Result rules out a model of exotic shear correlation 
But has no sensitivity to exotic rotational correlation 

42



First Holometer result rules out exotic shear correlation at the 
Planck diffraction scale, but not a purely rotational correlation 

43
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that can be combined into a quantity that scales like ✏
ijk

x
k

`
P

, in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i

(⌧) and x�
i

(⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,
although below we will assume a planar apparatus for simplicity. The functions x+

i

(⌧) and x�
i

(⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (27)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)
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This operator takes discrete eigenvalues:

|x̂|2|li = l(l + 1)`2
P

|li. (A5)

The discrete eigenvalues correspond to classical values of separation R according to:

R2 ⌘ l(l + 1)`2
P

⇡ l2`2
P

(A6)

where l are positive integers, quantum numbers of eigenstates of |x̂|2.
Let l

i

denote eigenvalues of position components projected in direction i. In a state |li of separation number l, the
projected position operator x̂

i

can have eigenvalues in units of `
P

,

l
i

= l, l � 1, . . . , �l, (A7)

giving 2l + 1 possible values. In an eigenstate with a definite value of position in direction i,

x̂
i

|l, l
i

i = l
i

`
P

|l, l
i

i. (A8)

The total number of position eigenstates in a 3-sphere is

N
Q3S

(R) =
lRX

l=1

(2l + 1) = l
R

(l
R

+ 2) = (R/`
P

)2, (A9)

where the last equality applies in the large l limit. Thus, the number of quantum-geometrical position eigenstates
in a volume scales holographically, as the surface area in Planck units. This simple Planckian quantization closely
resembles (but is not exactly the same as) the spectrum of area states more rigorously derived within the framework
of loop quantum gravity (Eq. 17).

Direct calculation (e.g., ref.[63]) also leads to the following product of amplitudes for measurements of either of the
transverse components x̂

j

, with j 6= i:

hl
i

|x̂
j

|l
i

� 1ihl
i

� 1|x̂
j

|l
i

i = (l + l
i

)(l � l
i

+ 1)`2
P

/2, (A10)

again for any i. The left side of equation (A10) can be interpreted as the expected value for the operator

x̂
j

|l
i

� 1ihl
i

� 1|x̂
j

(A11)

for components with j 6= i, in a state |l
i

i of definite x̂
i

. For l >> 1 and l
i

⇡ l, this corresponds to the expected
variance in components of position transverse to separation:

hx̂
j

|l
i

� 1ihl
i

� 1|x̂
j

i ! hx̂2
j

i. (A12)

We can rewrite this as a formula for the variance of the wave function x̂? in any direction transverse to separation,
given by the right hand side of Eq. (A10) in the limit of l >> 1, for l±l

i

= 1 (or indeed for any value of |l�l
i

| << l1/2):

hx̂2
?i = R`

P

. (A13)

This simple result is used here to set the scale of transverse position variance, for example in Eqs. (32) and (41). The
same algebra, with j and ~ in place of x and `

P

, yields a formula for the width of the wave function for transverse
components of standard angular momentum, in the limit of large |j|:

hĵ2
?i = |j|~. (A14)

However, this simple formula does not appear in standard treatments of angular momentum.

Appendix B: Experiment Concept: Superluminally Cross-Correlated, Co-located, Power-Recycled Sagnac
Interferometers

The exotic correlation (Eq. 35) may be detectable using an apparatus similar to the Fermilab Holometer[64],
reconfigured to measure pure rotational modes. The Holometer achieves the sensitivity needed to measure exotic

6

Thus any volume there is a maximum number of distinguishable events, such that the density of clocks and signals
used to measure their separation, GPS-style, not exceed the density of a black hole[37]. In a spacetime volume of
radius R and duration ⌧ in Planck units, the bound on the number of events is about R⌧ . Since c⌧ ⇡ R for a
covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[37]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
of macroscopic objects.

Planck Di↵raction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, @

µ

@µ = 0. For
waves of frequency ! propagating in a beam— a stationary, monochromatic wave state proportional to e�i!t (x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[@2
x

+ @2
y

� 2i!@
z

] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
for a Planck frequency beam[14], setting ! ⇡ m

P

c2/~:

h�✓2
P

i = `
P

/R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`

P

of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`
P

describes directional degrees of freedom. By contrast, in a full resolution 3D space the two directional dimensions on
their own would comprise (R/`

P

)2 degrees of freedom.
Directions in space emerge from the Planck scale in such a way that directional resolution of the emergent space on

any scale is given by Eq. (13). Field states cannot exceed the angular resolution of geometry, so they become strongly
entangled with geometry at a separation where Planck di↵raction matches the resolution of matter fields, ⇡ (m/R)2;
that separation is given by the idealized Chandrasekhar radius, Eq. (8). Note that a black hole of this size still has a
much larger entropy than field states of mass m < m

P

in the same volume.

Planckian Wave Packet Spreading

The directional blurring scale can also be derived from standard wave equations applied to quantum states of wave
packets with Planck frequency[14, 16, 17]. In this estimation, wave functions of world lines of bodies of any mass
spread at the same rate as those of particles of Planck mass. The scale can be estimated starting from the standard
wave function  (x

i

, t) of a massive body in classical position and time. In its classical rest frame, a massive body
obeys a 3+1-dimensional version of the paraxial wave equation (Eq. 12), with propagation in time in place of radial
distance, and rest mass in place of frequency:

[@2
x

+ @2
y

+ @2
z

� 2i(m/~)@
t

] = 0. (14)

Again like a laser beam, spreading of this wave function with time is unavoidable; any solution of duration ⌧ has a
mean variance of position at least as large as

h(r(t + ⌧) � r(t))2i = �2
0(⌧) > ~⌧/2m. (15)

the standard Heisenberg position uncertainty[38–41] for a body measured at times separated by ⌧ . In this wave
picture, it is derived in exact analogy to di↵ractive spreading of a light beam. Here, the sharp preparatory boundary

world line of 
beamsplitter

Signal of current Holometer is sensitive only 
to correlations associated with differential 
jitter of separation in the two arm directions, 
not to correlated rotation of both arms

ruled out

not ruled out



A reconfigured Fermilab Holometer could 
measure exotic rotational correlations

Current results rule out a signal correlation at the predicted 
amplitude  

Explores exotic correlations of space and time for the first time 

First direct evidence that emergent quantum gravity obeys a 
symmetry (i.e., little or no “jitter”, or shear degrees of freedom) 

Suggests that causal structure represents an exact symmetry 

But in the current Michelson layout, the Holometer is not 
sensitive to rotational correlations  (i.e., “twists” in inertial frame) 

It can be reconfigured to detect exotic rotation by bending one of 
the arms in both interferometers at right angles

44
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that can be combined into a quantity that scales like ✏
ijk

x
k

`
P

, in the same way as the exotic correlation on each
hypersurface.

In a Sagnac interferometer, the path of light is a closed circuit. The light follows the same path in two directions and
the signal records their phase di↵erence at the beamsplitter. Let ⌧+ and ⌧� denote a�ne parameters along the path
in the two directions. Denote the classical path of the interferometer in space, in the rest frame of the beamsplitter,
by x+

i

(⌧) and x�
i

(⌧), in the two directions around the circuit. Here i = 1, 2, 3 again denotes the 3D spatial indices,
although below we will assume a planar apparatus for simplicity. The functions x+

i

(⌧) and x�
i

(⌧) can be visualized as
the trajectories of “tracer photons” in each direction around the circuit; they map positions on the circuit in 3-space
to points on an interval on the real line, (�C0, +C0), where C0 denotes the circumference (or perimeter) of the circuit,
the origin maps to the beamsplitter, and ⌧ represents a time interval in the proper time of the beamsplitter. The
e↵ects of quantum geometry on the measured correlation ⌅(⌧) depends only on the classical path, defined by x+

i

(⌧)
and x�

i

(⌧), the positions of a pair of tracer photons that begin and end their circuit at the same time. The tangent
vector to the path in each direction is @x±

j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
directions (see Fig. 2). The areas from the beamsplitter to the two tracers change as:

dA+
i

/d⌧ = ✏
ijk

[x+
k

(⌧)dx+
j

/d⌧ ] (27)

dA�
i

/d⌧ = ✏
ijk

[x�
k

(⌧)dx�
j

/d⌧ ]. (28)

These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
ijk

1

2
[dx+

j

/d⌧ + dx�
j

/d⌧ ][x+
k

(⌧) � x�
k

(⌧)]. (29)

This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.

The exotic correlation amplitude in the signal is given by the projection of the exotic transverse position correlation
represented by the apparatus. The swept area provides this: relations between dA±

i

(⌧)/d⌧ , x±
k

(⌧) and dx±
j

/d⌧ combine
into a function of ⌧ that depends on the exotic correlation ✏

ijk

x
k

`
P

on each hypersurface, but where the spatial indices
have all contracted.

The projection can be visualized geometrically (Fig. 2). The essential assumptions are just the holographic scaling
of transverse position correlations, and the standard projective properties of emergent space-time that relate R, t and
⌧ . Assume for simplicity a planar apparatus, and thereby suppress directional indices for A

i

. The swept area rates
dA±/d⌧ are proportional to separation from the origin at any point on the path, and to the projection of the path
on the transverse direction at that point. Denote the angle between the light path tangent and position vectors by
✓0(⌧). This angle determines the a�ne mapping between t and ⌧ via dt/d⌧ = sin ✓0, and the swept area via

dA±/d⌧ = sin ✓0dA±/dt = R(⌧) sin ✓0, (30)

where R(⌧) = |x
i

(⌧)|. The contribution to the exotic signal correlation at each ⌧ , apart from a constant o↵set fixed
by the boundary condition determined by closure of the circuit, is also fixed by a projection onto the path, in this
case of transverse position variance (Eqs. 26, A13) :

(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)

6

Thus any volume there is a maximum number of distinguishable events, such that the density of clocks and signals
used to measure their separation, GPS-style, not exceed the density of a black hole[37]. In a spacetime volume of
radius R and duration ⌧ in Planck units, the bound on the number of events is about R⌧ . Since c⌧ ⇡ R for a
covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[37]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
of macroscopic objects.

Planck Di↵raction Limit on Directional Resolution

Holographic entanglement of fields in emergent geometry may be governed by a Planckian bound on directional
information. An estimate of the directional spread follows directly from the relativistic wave equation, @

µ

@µ = 0. For
waves of frequency ! propagating in a beam— a stationary, monochromatic wave state proportional to e�i!t (x, y, z),
transversely localized in x and y and extended in z— the wave equation becomes

[@2
x

+ @2
y

� 2i!@
z

] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
for a Planck frequency beam[14], setting ! ⇡ m

P

c2/~:

h�✓2
P

i = `
P

/R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
geometry by causal structure: the requirement that radial position and causal structure have Planck length precision
at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
and directional information, which describes two-dimensional angular orientation and transverse position. One factor
R/`

P

of holographic information content describes causal, longitudinal degrees of freedom; the other factor of R/`
P

describes directional degrees of freedom. By contrast, in a full resolution 3D space the two directional dimensions on
their own would comprise (R/`

P

)2 degrees of freedom.
Directions in space emerge from the Planck scale in such a way that directional resolution of the emergent space on

any scale is given by Eq. (13). Field states cannot exceed the angular resolution of geometry, so they become strongly
entangled with geometry at a separation where Planck di↵raction matches the resolution of matter fields, ⇡ (m/R)2;
that separation is given by the idealized Chandrasekhar radius, Eq. (8). Note that a black hole of this size still has a
much larger entropy than field states of mass m < m

P

in the same volume.

Planckian Wave Packet Spreading

The directional blurring scale can also be derived from standard wave equations applied to quantum states of wave
packets with Planck frequency[14, 16, 17]. In this estimation, wave functions of world lines of bodies of any mass
spread at the same rate as those of particles of Planck mass. The scale can be estimated starting from the standard
wave function  (x

i

, t) of a massive body in classical position and time. In its classical rest frame, a massive body
obeys a 3+1-dimensional version of the paraxial wave equation (Eq. 12), with propagation in time in place of radial
distance, and rest mass in place of frequency:

[@2
x

+ @2
y

+ @2
z

� 2i(m/~)@
t

] = 0. (14)

Again like a laser beam, spreading of this wave function with time is unavoidable; any solution of duration ⌧ has a
mean variance of position at least as large as

h(r(t + ⌧) � r(t))2i = �2
0(⌧) > ~⌧/2m. (15)

the standard Heisenberg position uncertainty[38–41] for a body measured at times separated by ⌧ . In this wave
picture, it is derived in exact analogy to di↵ractive spreading of a light beam. Here, the sharp preparatory boundary
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that can be combined into a quantity that scales like ✏
ijk

x
k

`
P

, in the same way as the exotic correlation on each
hypersurface.
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i
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i
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j

/@⌧ .
It will be convenient to express a general form for the functional dependence of ⌅(⌧) on the classical path in terms

of the “swept-out area”, A(⌧), similar to the concept used in Kepler’s second law of planetary motion. Define A
i

(⌧)
as an oriented area in the inertial rest frame, swept out by lines between the beamsplitter and the tracers in the two
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These quantities are completely determined by the geometrical configuration of the apparatus.
In general a transverse swept area can also be defined from from the swept area between the two tracers, adding

additional cross terms:

dA⇥
i

/d⌧ = ✏
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This component corresponds to shear, rather than rotation about the beamsplitter. We therefore assume here that
the emergent rotational component just depends on a combination of the two terms directly related to rotation about
the observer/beamsplitter world line, Eqs. (27) and (28). This assumption is also testable: if present, the shear terms
would be detectable in a Michelson interferometer[15, 16], which is not sensitive to the rotational terms measured in
a Sagnac device. Experiments in both configurations would distinguish the modes, and explore the full character of
transverse exotic position fluctuations.
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on each hypersurface, but where the spatial indices
have all contracted.
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i
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where R(⌧) = |x
i
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(⌅(⌧) + constant) = h�x2
?i1/2

R(⌧) sin ✓0 = `
P

R(⌧) sin ✓0. (31)

Since this also scales linearly with R(⌧), the swept area rate is simply related to the signal correlation by

(⌅(⌧) + constant) = `
P

dA/cd⌧. (32)

Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (33)
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Thus any volume there is a maximum number of distinguishable events, such that the density of clocks and signals
used to measure their separation, GPS-style, not exceed the density of a black hole[37]. In a spacetime volume of
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covariantly defined volume (such as a causal diamond), this is the same amount of information as the holographic
estimates from statistical gravity just discussed. Indeed, this argument has been used as a statistical basis for general
relativity[37]. Note that the area here combines spatial and temporal dimensions, R and ⌧ .

This argument is not airtight; for example, the measurement bounds might not apply to unmeasured degrees of
freedom if position information is subject to subtle squeezing. However, it does use an exact formulation of quantum
information that applies specifically to event positions. It suggests that large scale exotic Planckian correlations indeed
appear in measurements of relative positions of events and world lines, that could be measured by light reflecting o↵
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µ

@µ = 0. For
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[@2
x

+ @2
y

� 2i!@
z

] = 0, (12)

the same equation used to model laser beams. The minimum transverse angular spread is thus the di↵raction limit
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c2/~:
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P

i = `
P

/R . (13)

Physically, the role played by sharp longitudinal boundary conditions (mirrors) in a laser cavity is played in emergent
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at all separations. The degrees of freedom can be divided into radial information, which describes causal structure,
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their own would comprise (R/`
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any scale is given by Eq. (13). Field states cannot exceed the angular resolution of geometry, so they become strongly
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packets with Planck frequency[14, 16, 17]. In this estimation, wave functions of world lines of bodies of any mass
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wave function  (x
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, t) of a massive body in classical position and time. In its classical rest frame, a massive body
obeys a 3+1-dimensional version of the paraxial wave equation (Eq. 12), with propagation in time in place of radial
distance, and rest mass in place of frequency:
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the standard Heisenberg position uncertainty[38–41] for a body measured at times separated by ⌧ . In this wave
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Simplest reconfiguration to measure rotational correlations
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(but not mean rotation)

Null reconfiguration

paths enclose 
overlapping 

areas

no correlated 
signal encloses 

an area

neither path 
encloses an 

area



Completing a comprehensive study of exotic correlations

Basic hypothesis: exotic Planck scale correlations of geometry affect 
world lines of bodies and phases of fields 

General arguments set the amplitude but not the spatial pattern 
Limited options for spatial patterns: shear, strain, rotation 
Each experiment constrains a symmetry of exotic correlations 
Current result supports a Planck scale symmetry of causality 

After  the conclusive exclusion of shear by the current Holometer, the 
rotational mode is the only remaining possibility 

Complete constraints on independent covariances in space 

This reconfiguration of the Holometer will complete the survey 
It will either detect the effect or rule out the basic hypothesis 
It will either detect a Planck scale correlation, or provide evidence 
for Planck scale symmetry of inertia 
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Wait, there’s more: a possible connection between the 
cosmological constant and the field vacuum
Trace of Einstein equations includes a  “cosmological constant”, the sum of 
traces from matter and geometry: 

In standard theory it is arbitrary, unrelated to other constants 

In holographic gravity, it fixes the total cosmic information in Planck units: 

~ area of cosmic event horizon 

In an emergent universe the cosmological constant must be related to the 
entanglement of  the two quantum subsystems: field vacuum and geometry 
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This formula can be derived by summing the extra contributions from each straight photon path segment around
a circuit. Let �t denote the “extra” propagation time for a photon— the extra time to the next reflection, say— in a
small interval of a straight path, due to the fact that the apparatus is rotating. It is related to the transverse rotation
d�x? = R!0d⌧ in the same interval by

cd�t/d�x? = sin ✓0, (39)

using the notation shown in Fig (5). Combining with the swept area (Eq. 30), the net time lag around a circuit is

c

ˆ
d�t = 2!0A0/c. (40)

The total Sagnac e↵ect is twice this amount because it is the total di↵erence between opposite directions.
The exotic e↵ect produces the tiny fluctuations around this value, due to the imperfect definition of the frame. The

exotic correlation amplitude for a Sagnac device on any scale (Eq. 36), which is a mean square displacement, is equal
to the classical displacement for an apparatus rotating at angular velocity !0 = c/2P0, times the Planck length. Once
again, the exotic phase displacement resembles approximately the value of displacement in a Planckian random walk,
but with symmetries and projection factors appropriate to rotation. Notice that both the exotic fluctuation / A0/P0

and classical lag / !0A0 are defined entirely in terms of properties of the light path, which have a clear invariant
meaning.

V. EXOTIC ROTATIONAL CORRELATIONS AND COSMIC ACCELERATION

The properties of the Planck scale rotational correlations are scale-free power laws, apart from the Planck scale itself.
Systems in the real world have scales determined by the physics of matter fields. The previous discussion considers
the e↵ects of entanglement with geometrical states on field degrees of freedom, including the reconciliation with
holographic gravity, and small phase displacements measurable in interferometers. The latter calculation is definite
enough for a precise experimental test. We now consider estimates of the complementary e↵ect: how entanglement
of field vacuum and geometry could break the scale invariance of gravity, and account for the value of the scalar
cosmological constant in the emergent classical field equations.

The Cosmological Constant and Cosmic Acceleration

The Einstein field equations of general relativity can be contracted with the metric tensor g
µ⌫

to yield a scalar
relation,

⇤ =
2⇡G

c4
(T + 2R), (41)

where ⇤ denotes the cosmological constant, R ⌘ R(c4/16⇡G) denotes the Ricci curvature scalar R ⌘ gµ⌫R
µ⌫

in units
of 16⇡G/c4, R

µ⌫

denotes the Ricci curvature tensor, and T denotes the trace of the classical energy momentum tensor
of matter, T

µ⌫

. Within general relativity, there is no mathematical di↵erence between ⇤ and a component of the
matter field vacuum with T

µ⌫

proportional to g
µ⌫

. In standard theory, ⇤ is a new constant of nature, unconnected
to other properties of gravity or matter[28]. Its value is also mysterious and arbitrary in holographic theories of
gravity[43, 58].

Cosmic data suggest that the expansion of the universe is accelerating[59–62]. This phenomenon can be interpreted
in classical General Relativity as an e↵ect of ⇤. In addition to the standard attractive gravity of normal forms of
matter expressed in T , the cosmological term produces an additional repulsive acceleration between two bodies at
separation r,

r̈ = H2
⇤r, (42)

proportional to their separation r in Newtonian coordinates, where H2
⇤ ⌘ ⇤/3. In cosmological models where matter

has T > 0, H⇤ is the asymptotic value of the Hubble expansion rate in the far future, after other forms of matter have
thinned out due to the expansion. In other models, cosmic acceleration is caused by exotic new forms of “dark energy”
with T < 0, whose gravity creates acceleration even with ⇤ = 0. Those models also introduce new fundamental scales
of mass, generally unconnected with known physics [61–63].
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thinned out due to the expansion. In other models, cosmic acceleration is caused by exotic new forms of “dark energy”
with T < 0, whose gravity creates acceleration even with ⇤ = 0. Those models also introduce new fundamental scales
of mass, generally unconnected with known physics [61–63].
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Classical kinematic acceleration at distance r from an axis of rotation:               

                                                                              = rotation rate 

Cosmic acceleration by cosmological constant at separation r : 

Mean square exotic rotational fluctuation in volume of size R:  

Cosmic and rotational accelerations match at  R ~ H
-2/3

 ~ 60 km ~ 
geometrical entanglement length for standard strong interactions 

identify cosmic acceleration ~  rotational mismatch of field vacuum 

The universe “shakes apart”: ~ 60 km twists by ~ 1 Fermi, at ~ 5000 Hz 

Reprises the Dirac/Eddington/Zeldovich/Bjorken coincidence, m
3

pion ~ H0

Cosmic Acceleration and Rotational Acceleration
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This formula can be derived by summing the extra contributions from each straight photon path segment around
a circuit. Let �t denote the “extra” propagation time for a photon— the extra time to the next reflection, say— in a
small interval of a straight path, due to the fact that the apparatus is rotating. It is related to the transverse rotation
d�x? = R!0d⌧ in the same interval by

cd�t/d�x? = sin ✓0, (39)

using the notation shown in Fig (5). Combining with the swept area (Eq. 30), the net time lag around a circuit is

c

ˆ
d�t = 2!0A0/c. (40)

The total Sagnac e↵ect is twice this amount because it is the total di↵erence between opposite directions.
The exotic e↵ect produces the tiny fluctuations around this value, due to the imperfect definition of the frame. The

exotic correlation amplitude for a Sagnac device on any scale (Eq. 36), which is a mean square displacement, is equal
to the classical displacement for an apparatus rotating at angular velocity !0 = c/2P0, times the Planck length. Once
again, the exotic phase displacement resembles approximately the value of displacement in a Planckian random walk,
but with symmetries and projection factors appropriate to rotation.

V. ROTATIONAL FLUCTUATIONS AND COSMIC ACCELERATION

The properties of the Planck scale rotational correlations are scale-free power laws, apart from the Planck scale itself.
Systems in the real world have scales determined by the physics of matter fields. While we have discussed the e↵ect
of geometrical entanglement on field degrees of freedom, including the small phase displacements in interferometers,
we have not yet estimated the e↵ect of the matter vacuum on emergent quasi-classical geometry. It could be that the
matter vacuum determines the value of the scalar cosmological constant in the classical field equations.

The Cosmological Constant and Cosmic Acceleration

The Einstein field equations of general relativity can be contracted with the metric tensor g
µ⌫

to yield a scalar
relation,

⇤ =
2⇡G

c4
(T + 2R), (41)

where ⇤ denotes the cosmological constant, R ⌘ R(c4/16⇡G) denotes the Ricci curvature scalar R ⌘ gµ⌫R
µ⌫

in units
of 16⇡G/c4, R

µ⌫

denotes the Ricci curvature tensor, and T denotes the trace of the classical energy momentum tensor
of matter, T

µ⌫

. Within general relativity, there is no mathematical di↵erence between ⇤ and a component of the
matter vacuum with T

µ⌫

proportional to g
µ⌫

. In standard theory, ⇤ is a new constant of nature, unconnected to other
properties of gravity or matter[28]. Its value is also mysterious and arbitrary in holographic theories of gravity[43, 58].

Cosmic data suggest that the expansion of the universe is accelerating[59–62]. This phenomenon can be interpreted
in classical General Relativity as an e↵ect of the cosmological constant ⇤. In addition to the standard attractive
gravity of normal forms of matter expressed in T , the cosmological term produces an additional repulsive acceleration
between two bodies at separation r,

r̈ = H2
⇤r, (42)

proportional to their separation r in Newtonian coordinates, where H2
⇤ ⌘ ⇤/3. In cosmological models where matter

has T > 0, H⇤ is the asymptotic value of the Hubble expansion rate in the far future, after other forms of matter have
thinned out due to the expansion. In other models, cosmic acceleration is caused by exotic new forms of “dark energy”
with T < 0, whose gravity creates acceleration even with ⇤ = 0. Those models also introduce new fundamental scales
of mass, generally unconnected with known physics [61–63].

Cosmological Constant from Entanglement of Planckian Fluctuations with the Strong Vacuum

Cosmic Centrifugal Acceleration

This description of global dynamics is at the classical level. If matter and geometry are subsystems of a single
quantum system, the standard distinction between matter (T ) and geometry (R) becomes ambiguous on scales where
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they are significantly entangled. As shown above, that happens in an energy dependent way for matter fields, at the
Chandrasekhar radius for a given particle energy. It is natural to suggest that the value of ⇤ is set by entanglement
of a special scale of the matter vacuum with geometry.

We propose to interpret cosmic acceleration as an emergent kinematic property of space, associated with rotational
fluctuations in the inertial frame and their entanglement with known matter fields. In this interpretation, the scale
of cosmic acceleration is determined by known length scales already built into physics, the Planck scale and the
strong interaction scale. On cosmological scales, the average e↵ect is the same as a classical constant ⇤. The most
direct evidence for this mechanism would come from interferometric measurement of Planck rotational fluctuations
on laboratory scales.

The starting point is to draw a simple comparison with Eq. (42): in a classical system rotating at a rate !, a body
at separation r from the axis of rotation experiences a centrifugal acceleration,

r̈ = !2r. (43)

Like cosmic acceleration (Eq. 42), it is independent of mass, always directed outwards, and is proportional to r.
The two outward accelerations agree if ! = H⇤. However, it is well known that cosmic acceleration cannot simply

be due to a classical centrifugal acceleration from rotation on a cosmic scale. Classical rotation is not isotropic,
and the centrifugal e↵ect from rotation at a rate ! = H⇤ would cause large amplitude, large scale anisotropy of
cosmic radiation and expansion that is not observed. Cosmic acceleration could however be associated with rotational
fluctuations on a much smaller scale. These average out in a large scale time or space average, so they do not conflict
with cosmic isotropy data. Even if rotation has zero mean and fluctuates in random directions, its fluctuations always
push outwards, so the mean square fluctuating component creates a net, secular centrifugal acceleration. Colloquially,
we can say that the universe shakes apart.

Of course in Newtonian physics, an acceleration entails a force. Centrifugal acceleration can refer to a real force,
as one experiences in a spinning merry-go-round, or a fictional one, as in a noninertial rotating frame. They refer to
the same e↵ect: because of the noninertial relationship between radial and tangential components of position, a body
that moves at a velocity that maintains a constant direction in a rotating frame accelerates outwards in the inertial
frame. In an emergent geometry, the definition of an emergent acceleration is bound up with the definition of emergent
position. Here, rather than interpreting cosmic acceleration as a new force, we interpret it as an emergent kinematical
e↵ect of exotic rotational correlations that describe Planckian deviations from inertial motion— the mismatch between
the local and cosmic inertial frames. The rotational fluctuations average to smaller values at large scales and long
durations, but there may be a very small residual systematically outward-directed emergent radial acceleration.

Clearly, quantum-geometrical fluctuations in rotation do not have such an e↵ect on all scales. If they did, everything
would fly apart at the Planck rate. But there is a scale where the Planckian rotational acceleration matches the
observed cosmic acceleration. As it turns out, that scale coincides with the geometrical entanglement scale for ⇤�1

QCD

,
the structural scale of the strong interaction vacuum. This heuristic model suggests an explanation for the value of
the cosmological constant.

Absolute Value of the Cosmological Constant, ⇤

As a rough estimate, start with the root-mean-square rate of Planckian rotational fluctuations at separation R
given by Eq. (24) in Planck units, !

R

= R�3/2. Centrifugal acceleration thus matches cosmic acceleration— that is,
!

R

= H⇤— for fluctuations of spatial extent

R⇤ ⇡ H
�2/3
⇤ . (44)

This is the Chandrasekhar-Planck entanglement radius (Eq. 8) for particle mass

m(R
C

= R⇤) = R
�1/2
⇤ ⇡ H

1/3
⇤ . (45)

It has long been noticed that in Planck units, H
1/3
0 approximately coincides with a proton or pion mass. A direct

physical relationship between cosmological ⇤ and a strong interaction scale— m
⇡

⇡ H
1/3
⇤ — was posited long ago by

Zeldovich[64], and more recently by Bjorken and others[65–69]. In the picture here, the connection is established, and
the scale is set, via entanglement of the matter vacuum with geometrical rotational states. We conjecture that on
small scales, rotational fluctuations are “virtual” in the sense that a net outward acceleration is not generated in the
emergent space, but that above a scale R⇤ connected with strong interactions, entanglement with the matter vacuum
produces a universal secular radial acceleration. At a spatial scale of R⇤, rotational fluctuations on a light crossing
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cosmological constant in the emergent classical field equations.

The Cosmological Constant and Cosmic Acceleration

The Einstein field equations of general relativity can be contracted with the metric tensor g
µ⌫

to yield a scalar
relation,

⇤ =
2⇡G

c4
(T + 2R), (41)

where ⇤ denotes the cosmological constant, R ⌘ R(c4/16⇡G) denotes the Ricci curvature scalar R ⌘ gµ⌫R
µ⌫

in units
of 16⇡G/c4, R

µ⌫

denotes the Ricci curvature tensor, and T denotes the trace of the classical energy momentum tensor
of matter, T

µ⌫

. Within general relativity, there is no mathematical di↵erence between ⇤ and a component of the
matter field vacuum with T

µ⌫

proportional to g
µ⌫

. In standard theory, ⇤ is a new constant of nature, unconnected
to other properties of gravity or matter[27]. Its value is also mysterious and arbitrary in holographic theories of
gravity[42, 57].

Cosmic data suggest that the expansion of the universe is accelerating[58–61]. This phenomenon can be interpreted
in classical General Relativity as an e↵ect of ⇤. In addition to the standard attractive gravity of normal forms of
matter expressed in T , the cosmological term produces an additional repulsive acceleration between two bodies at
separation r,

r̈ = H2
⇤r, (42)

proportional to their separation r in Newtonian coordinates, where H2
⇤ ⌘ ⇤/3. In cosmological models where matter

has T > 0, H⇤ is the asymptotic value of the Hubble expansion rate in the far future, after other forms of matter have
thinned out due to the expansion. In other models, cosmic acceleration is caused by exotic new forms of “dark energy”
with T < 0, whose gravity creates acceleration even with ⇤ = 0. Those models also introduce new fundamental scales
of mass, generally unconnected with known physics [60–62].

Cosmological Constant from Entanglement of Geometry with the Field Vacuum

Cosmic Centrifugal Acceleration

If matter and geometry are subsystems of a single quantum system, the standard distinction between matter (T )
and geometry (R) becomes ambiguous on scales where they are significantly entangled. As shown above, that happens
in an energy dependent way for matter fields, at the Chandrasekhar radius for a given particle energy. It is natural to
suggest that the value of ⇤ in the emergent classical description is set by entanglement of a special scale of the field
vacuum with geometry.

We propose to interpret cosmic acceleration as an emergent kinematic property of space, associated with rotational
fluctuations in the inertial frame and their entanglement with known matter fields. In this interpretation, the scale
of cosmic acceleration is determined by known length scales already built into physics, the Planck scale and the
strong interaction scale. On cosmological scales, the average e↵ect is the same as a classical constant ⇤. The most
direct evidence for this mechanism would come from interferometric measurement of exotic rotational correlations on
laboratory scales, as discussed above.

A simple starting point is to compare Eq. (42) with a classical system rotating at a rate !. A body at separation
r from the axis of rotation experiences a centrifugal acceleration,

r̈ = !2r. (43)
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This formula can be derived by summing the extra contributions from each straight photon path segment around
a circuit. Let �t denote the “extra” propagation time for a photon— the extra time to the next reflection, say— in a
small interval of a straight path, due to the fact that the apparatus is rotating. It is related to the transverse rotation
d�x? = R!0d⌧ in the same interval by

cd�t/d�x? = sin ✓0, (39)

using the notation shown in Fig (5). Combining with the swept area (Eq. 30), the net time lag around a circuit is

c

ˆ
d�t = 2!0A0/c. (40)

The total Sagnac e↵ect is twice this amount because it is the total di↵erence between opposite directions.
The exotic e↵ect produces the tiny fluctuations around this value, due to the imperfect definition of the frame. The

exotic correlation amplitude for a Sagnac device on any scale (Eq. 36), which is a mean square displacement, is equal
to the classical displacement for an apparatus rotating at angular velocity !0 = c/2P0, times the Planck length. Once
again, the exotic phase displacement resembles approximately the value of displacement in a Planckian random walk,
but with symmetries and projection factors appropriate to rotation. Notice that both the exotic fluctuation / A0/P0

and classical lag / !0A0 are defined entirely in terms of properties of the light path, which have a clear invariant
meaning.

V. EXOTIC ROTATIONAL CORRELATIONS AND COSMIC ACCELERATION

The properties of the Planck scale rotational correlations are scale-free power laws, apart from the Planck scale itself.
Systems in the real world have scales determined by the physics of matter fields. The previous discussion considers
the e↵ects of entanglement with geometrical states on field degrees of freedom, including the reconciliation with
holographic gravity, and small phase displacements measurable in interferometers. The latter calculation is definite
enough for a precise experimental test. We now consider estimates of the complementary e↵ect: how entanglement
of field vacuum and geometry could break the scale invariance of gravity, and account for the value of the scalar
cosmological constant in the emergent classical field equations.

The Cosmological Constant and Cosmic Acceleration

The Einstein field equations of general relativity can be contracted with the metric tensor g
µ⌫

to yield a scalar
relation,

⇤ =
2⇡G

c4
(T + 2R), (41)

where ⇤ denotes the cosmological constant, R ⌘ R(c4/16⇡G) denotes the Ricci curvature scalar R ⌘ gµ⌫R
µ⌫

in units
of 16⇡G/c4, R

µ⌫

denotes the Ricci curvature tensor, and T denotes the trace of the classical energy momentum tensor
of matter, T

µ⌫

. Within general relativity, there is no mathematical di↵erence between ⇤ and a component of the
matter field vacuum with T

µ⌫

proportional to g
µ⌫

. In standard theory, ⇤ is a new constant of nature, unconnected
to other properties of gravity or matter[28]. Its value is also mysterious and arbitrary in holographic theories of
gravity[43, 58].

Cosmic data suggest that the expansion of the universe is accelerating[59–62]. This phenomenon can be interpreted
in classical General Relativity as an e↵ect of ⇤. In addition to the standard attractive gravity of normal forms of
matter expressed in T , the cosmological term produces an additional repulsive acceleration between two bodies at
separation r,

r̈ = H2
⇤r, (42)

proportional to their separation r in Newtonian coordinates, where H2
⇤ ⌘ ⇤/3. In cosmological models where matter

has T > 0, H⇤ is the asymptotic value of the Hubble expansion rate in the far future, after other forms of matter have
thinned out due to the expansion. In other models, cosmic acceleration is caused by exotic new forms of “dark energy”
with T < 0, whose gravity creates acceleration even with ⇤ = 0. Those models also introduce new fundamental scales
of mass, generally unconnected with known physics [61–63].
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is determined by a choice of world line or timelike observer. In the emergent space, spatial structure is defined by
intersecting light cones from the ends of any interval on the world line, called causal diamonds. World lines, intervals
of proper time, and causal diamonds represent invariant emergent geometrical objects. In the emergent system, there
is no fixed background space to define an inertial frame. From one moment to the next, the situation depends only
on previous relationships. The causal dependences of rotation around a world line are mapped out by the light cones
emanating from each event. The total geometrical state of a system includes entanglement of all of the nested causal
diamonds, and the total variance in position is the sum of variances from the nested diamonds (see Figs. 2, ??).

The e↵ect can be thought of as a quantum di↵erential rotation of space: everything closer than R rotates relative
to everything more distant than R, by a very small amount. It is helpful to visualize the fluctuations as a sum of
coherent discrete transverse spatial displacements, or quantum-gravitational twists of space, associated with discrete
displacements in time. The amplitude corresponds to a Planck scale di↵raction bound on directional resolution in
space, or to a discrete Planck random walk in transverse position. On a null trajectory from a distant source to an
observer, for each Planck step, space experiences a random transverse displacement from the classical trajectory, in
which it shares common with other radial trajectories at the same R. The exotic correlation arises from the sum of
coherent transverse displacement at the 2D boundaries of the nested causal diamonds.

In the quantum states of an interferometer, fields are entangled with geometry. The measured radiation depends
on the phases of light incident on the beamsplitter, which combines geometrical information from macroscopically
di↵erent paths through the space[47–49]. The projection of geometrical quantum states is determined by the true
causal structure of the space, the therefore by the transverse components to the observer’s radial direction. The
relationship between the two is analyzed in next section to compute the e↵ect on an interferometer signal.

Behavior of Exotic Rotational Fluctuations in Large Systems

Like zero point fluctuations of a field excitation in a vacuum, this quantum “motion” represents a quantum system
with a nonzero width of a wave function that has a zero mean. In this picture, the zero point refers to a stationary
direction in the classical nonrotating frame. A quantum relationship with matter out to the cosmic horizon prepares
the global state and defines zero rotation. A zero net rotation state is defined by the classical geometry, but nearby
there is a nonzero quantum variance that depends on distance from an observer. The wave function width is identified
with the exotic correlations and fluctuations.

Directional degrees of freedom are subject to the usual holographic bounds on information, so the above estimates
of directional variance lead to an estimate of the exotic directional correlations and their associated fluctuations, as
shown in Figure (2). The exotic correlation and rotational displacement variance at separation R from an observer
are about

d⌅
R

(⌧)/d⌧ ⇡ (dhx2
?i/dR)(dR/d⌧) ⇡ c`

P

. (22)

The rotational displacement is coherent in all directions from the observer at a constant radial separation defined by
its causal structure— that is, on a 2+1-D tube of spacelike 2-surfaces swept out in time by causal diamonds with
fixed sizes R = c⌧/2. For calculational simplicity, in this paper we focus on results in nearly-flat space relevant for
experiments, but the formulation based on causal diamonds should generalize covariantly to curved spaces. A toy
model of 3D holographic quantum positional states, summarized in Appendix (A), based on the 3D spin algebra,
provides an example of a consistent holographic model of quantum position states in 3D. We use classical space-time
for the time projection, as in Eq. (22). Since the states used are in 3D instead of 4D, time evolution is still treated
heuristically, both here and in the calculation of interferometer response below.

We can describe the e↵ect as statistical fluctuations in rotation of the inertial frame around each axis. An ordinary
rotation about a body at the origin corresponds to transverse components motion dx

i

/dt of a body at x
k

according
to the classical relation,

dx
i

/dt = ✏
ijk

x
k

!
j

, (23)

where !
j

is the rotation rate for component j. In the exotic fluctuations, each component of rotation of a 2-sphere of
radius R has fluctuations with

h!2
i

(R)i ⇡ c2`
P

R�3. (24)

All transverse displacements on a 2-sphere are self consistent according to the classical relation Eq. 23. That is, each
component of rotational fluctuation determines an entangled motion across the whole sphere. In the same way that
spins of quantum particles sent in opposite directions are entangled, in this case, the rotation of all the enclosed world
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Cosmic information ~ number of QCD field modes

Holographic information in (2D) cosmic horizon equals (3D) information 
in  field modes up to: 

Adopt a current cosmic measurement in Planck units: 

The corresponding cut off closely matches the QCD vacuum scale: 

Main uncertainty in excellent agreement comes from QCD theory 

Entanglement of quantum geometry with field vacuum could explain the 
value of the cosmological constant from only known scales of physics
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One estimate[20] of H⇤ from current cosmological data[53, 61] yields

H⇤ = ⌦1/2
⇤ H0 = 0.99 ± 0.018 ⇥ 10�61 (51)

in Planck units, where H0 denotes the current value of the Hubble constant and ⌦⇤ denotes the density parameter
of the cosmological constant. The value of the field cuto↵ scale that matches the observed cosmological information
density is thus

k⇤ = 1.65 ± 0.01 ⇥ 10�20m
P

= 201 ± 1.2 MeV, (52)

which is remarkably close to the scale ⇤
QCD

defined by the strong interactions[62]. The corresponding spatial
coherence scale of the rotational entanglement is of the order of

R⇤ = k�2
⇤ = 3.7 ⇥ 1039 = 60km. (53)

The scale invariance of gravity is thus broken by the strong interactions, as shown in Figure (6). The e↵ect of the
matter vacuum is imprinted here not by a coupling, but by a process related to ongoing collapse of wave function of
directionally entangled fields and geometry. The scale of cosmic acceleration is set by the imperfect emergence of the
inertial frame— the scale where the directional information content of the field vacuum runs up against the Planck
limit. In the cosmic system, the strong interaction length in 3D maps holographically onto the Planck length in 2D.

The nature of the entanglement can be viewed from either the matter or the geometry side. On the matter side, it
comes from the distance where the directional alignment of a field mode of mass m = ⇤

QCD

, an angle (R⇤
QCD

)�1,
equals the Planck di↵raction angle (Eq. 13), R�1/2. On the geometry side, it has to do with localization and
information loss on the cosmic scale. In standard quantum mechanics, the matter wave function has an uncertainty
given by Eq. (15) for a particle of mass m over duration ⌧ ; this is the spatial width of the wave function of a
particle world line, for a causal diamond extending over ⌧ . For the matter vacuum with m = ⇤

QCD

, that equals the
Chandrasekhar radius at cosmic duration, H�1

⇤ . Virtual rotation a↵ects secular radial acceleration when localization
in space matches the size of a field state over a Hubble time, the timescale for information from infinity to be refreshed,
and the natural scale for the cosmic expansion to “notice” the mismatch of local and cosmic inertial frames. At the
radius R⇤, incoming rotational cosmic information aligns the long term average with the cosmic inertial frame, leaving
a residual centrifugal acceleration at larger radii.

Although the detailed underlying mechanism of entanglement has not been rigorously modeled, these heuristic argu-
ments suggest a relation of the Standard Model to cosmic acceleration via basic physical principles, without additional
parameters, scales, or fields (see Figure 6). It is clearly too simplistic to picture cosmic acceleration as simply due
to the universe “shaking apart”, but there appears to be a plausible connection between two measurable phenomena
that have no relationship in standard theory: the cosmological constant, and exotic correlations in interferometers.
Since the rotational correlations could be confirmed in an experiment, the Sagnac experimental program described
here could provide a concrete clue to the link between Standard Model physics and cosmic acceleration.

Coherent Fluctuations of Cosmic Acceleration

A new and unique feature of this scenario is that cosmic acceleration is not constant, but fluctuates holographically.
The systematic acceleration that we measure in cosmic data is a sum of fluctuating contribution from many small
scale rotational fluctuations.

In principle, there must be a locally measurable, radial component to exotic Planck motion that was not included
in the scale-free analysis used for the Sagnac interferometer. It corresponds to a monopole expansion mode of spatial
motion, unlike the pure tensor modes associated with gravitational waves, or pure rotational modes associated with
exotic Planck fluctuations, without the entanglement of the matter vacuum. Unlike a standard cosmological constant,
the radial component is not constant but fluctuates. The fluctuations are not scale free, but have a characteristic
temporal frequency at about c/R⇤ ⇡ 5000 Hz, and a spatial coherence scale of about R⇤ ⇡ 60 km. In principle, these
distinctive features could enable a direct experimental test of this scenario for emergent cosmic acceleration. The
temporal variation and spatial coherence distinguish it from classical backgrounds.

The e↵ect could be measured using correlated signals between spatially separate, ground-based interferometers.
Normally in gravitational wave observatories, the important signal is the dark port of the Michelson interferometer,
which records the arm-length di↵erence or strain mode associated with gravitational waves. For cosmic gravitational
wave sources, this signal is correlated over large interferometer separations. Here, we are interested in another signal,
the common-mode or bright port signal associated with a breathing mode, which measures the sum of the arms. It
should have significant power only at low frequencies (below about 5000 Hz), and should be correlated spatially only
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time, with transverse width about equal to the strong interaction length, gives an rms angular rotation rate about
equal to the Hubble constant.

The entanglement conjecture suggests a more precise way to relate the value of ⇤ to the matter vacuum. The
e↵ective constant ⇤ in the classical field equation comes about from entanglement of the subsystems represented by
matter T and curvature R. In the classical view the total information in the system is expressed in holographic terms,
the area of the event horizon as determined by ⇤. The number of degrees of freedom of the cosmic system can be
estimated in standard physics from the matter side or from the geometry side. They agree when the 3D information
density for the field vacuum equals the mean 3D density of holographic information within the cosmic horizon[22, 58].

The number of gravitational degrees of freedom is one quarter of the area of the cosmic event horizon in Planck
units, given by ⇡H�2

⇤ . Dividing by the 3-volume gives the holographic information density

I⇤ = 3H⇤/4. (46)

The density of field modes per 3D volume with a UV cuto↵ at k
max

is

I
f

(k
max

) = k3
max

4⇡/3(2⇡)3. (47)

A scalar field therefore matches cosmic information (that is, I⇤ = I
f

(k
max

)) for a field cuto↵ at

k
max

= k⇤ ⌘ (H⇤9⇡2/2)1/3. (48)

One estimate of H⇤ from current cosmological data[62, 70] yields[22]

H⇤ =
p

⇤/3 = ⌦1/2
⇤ H0 = 0.99 ± 0.018 ⇥ 10�61 (49)

in Planck units, where H0 denotes the current value of the Hubble constant and ⌦⇤ denotes the density parameter
of the cosmological constant. (The value and errors are not meant to be definitive, but are taken to illustrate typical
values of current measurements near the state of the art; the values here correspond to h = 0.738 ± 0.024 and
⌦⇤ = 0.7 ± 0.01[22].) The value of the field cuto↵ scale that matches the observed cosmological information density
is thus

k⇤ = 1.65 ± 0.01 ⇥ 10�20m
P

= 201 ± 1.2 MeV. (50)

This value is close to the characteristic scale ⇤
QCD

of the strong vacuum. Estimates of that scale, from theoretical
extrapolation of measurements at higher energies[71], have a fractional systematic uncertainty comparable those of
the cosmological measurements. Within current systematic errors, the cosmic and matter information densities agree.
The corresponding spatial coherence scale of the rotational entanglement is about

R⇤ = k�2
⇤ = 3.7 ⇥ 1039 = 60km. (51)

In this scenario, the scale invariance of gravity is broken by the strong interactions. The e↵ect of the matter
vacuum is imprinted here not by a coupling, but by a process related to ongoing quantum entanglement of matter
with geometry. The scale of cosmic acceleration is set by the imperfect emergence of the inertial frame— the scale
where the directional information content of the field vacuum runs up against the Planck limit. In the cosmic system,
the strong interaction length in 3D maps holographically onto the Planck length in 2D.

The nature of the entanglement can be viewed from either the matter or the geometry side. On the matter
side, it comes from the distance where the directional separation between field modes of mass m = ⇤

QCD

, an
angle (R⇤

QCD

)�1, equals the Planck di↵raction angle (Eq. 13), R�1/2. On the geometry side, it has to do with
localization and information loss on the cosmic scale. In standard quantum mechanics, the matter wave function
has an uncertainty given by Eq. (15) for a particle of mass m over duration ⌧ ; this is the spatial width of the wave
function of a particle world line, for a causal diamond extending over ⌧ . For the matter vacuum with m = ⇤

QCD

,
that equals the Chandrasekhar radius at cosmic duration, H�1

⇤ . Virtual rotation a↵ects secular radial acceleration
when localization in space matches the size of a field state over a Hubble time, the timescale for information from
infinity to be refreshed, and the natural scale for the cosmic expansion to “notice” the mismatch of local and cosmic
inertial frames. At the radius R⇤, incoming rotational cosmic information aligns the long term average with the
cosmic inertial frame, leaving a residual centrifugal acceleration at larger radii.

It is clearly too simplistic to picture cosmic acceleration as simply due to the universe “shaking apart”, but there
appears to be a plausible connection between two independently measurable phenomena that have no relationship in
standard theory: the cosmological constant, and exotic correlations in interferometers. Since the rotational correlations
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It has long been noticed that in Planck units, H
1/3
0 approximately coincides with a proton or pion mass. A direct

physical relationship between cosmological ⇤ and a strong interaction scale— for example, m
⇡

⇡ H
1/3
⇤ — was posited

long ago by Zeldovich[64], and more recently by Bjorken and others[65–69]. In the picture here, the connection is
established, and the scale is set, via entanglement of the field vacuum with exotic geometrical rotational states. We
conjecture that on small scales, rotational fluctuations are “virtual” in the sense that a net outward acceleration is not
generated in the emergent space, but that above a scale R⇤ connected with strong interactions, entanglement with
the field vacuum produces a universal secular radial acceleration. At a spatial scale of R⇤, rotational fluctuations on
a light crossing time, with transverse width about equal to the strong interaction scale, gives an rms angular rotation
rate about equal to the Hubble constant.

The entanglement conjecture suggests a more precise way to relate the value of ⇤ to a field vacuum scale. The
e↵ective constant ⇤ in the classical field equation comes about from entanglement of the subsystems represented by
matter T and curvature R. In the classical view the total information in the system is expressed in holographic terms,
the area of the event horizon as determined by ⇤. The number of degrees of freedom of the cosmic system can be
estimated in standard physics from the matter side or from the geometry side. They agree when the 3D information
density for the field vacuum equals the mean 3D density of holographic information within the cosmic horizon[22, 58].

The number of gravitational degrees of freedom is one quarter of the area of the cosmic event horizon in Planck
units, given by ⇡H�2

⇤ . Dividing by the 3-volume gives the holographic information density

I⇤ = 3H⇤/4. (46)

The density of field modes per 3D volume with a UV cuto↵ at k
max

is

I
f

(k
max

) = k3
max

4⇡/3(2⇡)3. (47)

A scalar field therefore matches cosmic information (that is, I⇤ = I
f

(k
max

)) for a field cuto↵ at

k
max

= k⇤ ⌘ (H⇤9⇡2/2)1/3. (48)

One estimate of H⇤ from current cosmological data[22, 62, 70] yields

H⇤ = ⌦1/2
⇤ H0 = 0.99 ± 0.018 ⇥ 10�61 (49)

in Planck units, where H0 denotes the current value of the Hubble constant and ⌦⇤ denotes the density parameter of
the cosmological constant. (This value and error estimate are not meant to be definitive, but are taken to illustrate
typical values of current measurements near the state of the art; the values chosen here correspond to h0 = 0.738±0.024
and ⌦⇤ = 0.7±0.01 in standard cosmological notation.) The value of the field cuto↵ scale that matches this observed
cosmological information density is

k⇤ = 1.65 ± 0.01 ⇥ 10�20m
P

= 201 ± 1.2 MeV. (50)

This value is close to the characteristic scale ⇤
QCD

of the strong vacuum. Estimates of that scale, from theoretical
extrapolation of measurements at higher energies[71], have a fractional systematic uncertainty comparable those of
the cosmological measurements. Within current systematic errors, the cosmic and matter information densities agree.
The corresponding spatial coherence scale of the rotational entanglement is about

R⇤ = k�2
⇤ = 3.7 ⇥ 1039 = 60km. (51)

In this scenario, the scale invariance of gravity is broken by the strong interactions. The e↵ect of the field vacuum
is imprinted here not by a coupling, but by quantum entanglement of fields with geometry. The scale of cosmic
acceleration is set by the imperfect emergence of the inertial frame— the scale where the directional information
content of the field vacuum runs up against the Planck limit. In the cosmic system, exotic correlation maps the strong
correlation length in 3D holographically onto the Planck length in 2D.

The nature of the entanglement can be viewed from either the matter or the geometry side. On the matter
side, it comes from the distance where the directional separation between field modes of mass m = ⇤

QCD

, an
angle (R⇤

QCD

)�1, equals the Planck di↵raction angle (Eq. 13), R�1/2. On the geometry side, it has to do with
localization and information loss on the cosmic scale. In standard quantum mechanics, the matter wave function
has an uncertainty given by Eq. (15) for a particle of mass m over duration ⌧ ; this is the spatial width of the wave
function of a particle world line, for a causal diamond extending over ⌧ . For the field vacuum with m = ⇤

QCD

, that
equals the Chandrasekhar radius at cosmic duration, H�1

⇤ . Virtual rotation a↵ects secular radial acceleration when
localization in space matches the size of a field state over a Hubble time, the timescale for information from infinity
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Suppose quantum geometry entangles with the Standard Model field 
vacuum to produce a cosmological constant in the emergent space-time 

Mean rotation vanishes, consistent with statistical isotropy 

Not perfectly constant, but fluctuates: coherence scale is about 60 km 

Cosmic acceleration fluctuates below ~ 5000 Hz 

Radial fluctuations by ~ 1 Planck length— likely unobservable 

Cosmic acceleration timescale naturally occurs on astrophysical evolution 
timescale 

They both depend on similar combinations of fundamental constants, 
related to the Chandrasekhar mass for protons (Planck+ QCD scales) 

Explains “why now” 

Emergent Cosmological Constant

53



Summary

Planck scale quantum geometry can lead to exotic correlations in 
displacements of bodies and phases of fields that grow with scale, in the 
same way as standard quantum correlations in extended systems. 

Even without a theory of quantum gravity, basic quantum principles 
suffice to predict the effect in the signal of an interferometer.  

The prediction can be tested with a reconfiguration of the Fermilab 
Holometer. 

Entanglement of these correlations with the Standard Model vacuum 
might explain the origin of the cosmological constant.
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Exotic Correlation Appears in Loop Quantum Gravity 

Some theories of quantum gravity have no fixed background space 

Discrete spectrum of spatial area states, normalized by black hole entropy: 

Separation of geometrical states grows like  dA ~ A1/2 ~ R 

Degrees of freedom scale holographically, like R2  

Exotic variance of position correlations ~ R 

2

II. NORMALIZATION FROM LOOP QUANTUM GRAVITY

Discrete spectrum of area states in LQG:

Aj = 8⇡�~Gc

�3
X

i

p
ji(ji + 1) (6)

where ji are half-integers i/2 for integers i. The Immirizi parameter � is estimated from black hole entropy to be

� = ln 2/⇡
p
3. For large areas (i >> 1) we can write the eigenvalues [of the “main sequence” states] as

An ⇡ AQn
2 (7)

for integers n, where

AQ ⌘ 2⇡�~Gc

�3 (8)

is a fundamental Planck area unit. The di↵erence between adjacent area states is

An+1 �An ⇡ 2AQn. (9)

Notice that the spacing grows with n. Thus for larger areas, each area eigenstate is bigger than the last by much more
than a single Planck area pixel. This property reflects the same blurring or loss of relative positional information
on large scales that appears in wave equation solutions, holographic information constraints, and other proposed
“infrared” departures from field theory. It explicitly captures an essential nonlocal Planckian feature not compatible
with a metric-based field approach: the positional relationships of the geometry itself depend on separation, and
degrade over large areas.

Arguments give above suggest that the correlation function for phase variations around a planar circuit scales with
the area divided by the circumference. Not surprisingly, the correlations are related to the shape of the circuit.

Consider an area defined by a planar surface between several world lines, say, the centers of mass of mirrors in
a Sagnac interferometer, all at rest. In classical language, we propagate this surface forward in time by extending
along their world lines in the rest frame. In Quantum General Relativity, there is no independent clock ticking; the
equivalent of a Planckian clock tick is defined relationally by a transition between quantum states of the spacetime
geometry.

Consider the light propagating between the mirrors around this area in two directions from the beam splitter.

For definiteness, consider a square arrangment with sides L. For a square we have n ⇡ LA

�1/2
Q , hence a natural

unit of length `P = `Q = A

1/2
Q . This fixes an absolute normalization for the signal correlation function. In a

square, propagation around opposite sides of the circuit occurs with a maximal separation, and contributes maximal
correlation for a given area.

`Q =

q
2 ln 2~Gc

�3
/

p
3 (10)

The time propagation of the world lines that define the corners of the square surface defines a relationship between
(local) linear propagation around the circuit, and (nonlocal) areal properties of the enclosed space. When the light
comes full circuit to a measurement at the beamsplitter, the wave function of the apparatus “collapses” into a definite
phase di↵erence; the light in the circuit is in a superposition along with di↵erent geometries, each associated with
di↵erent optical phases.

Thus a correlation is created by the discrete geometrical system of world lines across the whole apparatus; thus,
the result depends both on the total area and on the time propagation, which in turn depend on changes in direction
from interactions with world lines of matter that create the circuit. Although we have expressed it as a variance in
arm length, the positional correlation can also interpreted as a variation in time. The relative spatial positions of
reflection events at opposite sides of the circuit, including their time positions, have a quantum ambiguity inherited
from the granularity of the Planckian quantum states of the enclosed space. The e↵ect is not associated with any
locally defined function of the classical metric and its derivatives, which would be independent of the measurement
being made.

This estimate provides an exact normalization for the predicted Sagnac quantum geometrical correlation function
that applies to any shape. It is not su�ciently rigorous to prove that the correlations have a pure-rotational symmetry,
although that appears plausible given the structure of the theory. It is useful as a baseline target for design of
experiments. It suggests that the tools of Loop Quantum Gravity will be su�cient to make adequately precise
predictions for unique quantum-gravitational e↵ects that are realistically measurable in the laboratory.

…``the fundamental quanta of geometry are one dimensional, polymer-like excitations over nothing, 
rather than gravitons, the wavy undulations over a continuum background.”

1408.4336, Ashketar, Reuter and Rovelli
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Define the total swept area A(⌧) as a sum of the rotational components in the two directions, so that

|dA/d⌧ | = |dA+/d⌧ + dA�/d⌧ |, (37)

and the total enclosed area is

A0 =
1

2

ˆ
P0

⌧=0
d⌧dA/d⌧ (38)

when integrated over the total perimeter P0. Adding the contributions from the two directions in Eq. (36) then leads
to the following formula for exotic correlation in a planar Sagnac interferometer of any shape:

⌅(⌧)/`
P

= ⌅0/`
P

� |dA(⌧)/cd⌧ |, (39)

where the correlation at zero lag,

⌅0 ⌘ ⌅(⌧ = 0) = 2A0`P

/P0, (40)

gives the total mean square phase variation from the exotic correlation in length units. This constant is determined
by the requirement that the correlation integrates to zero for |c⌧ | > P0, so that the average rotation vanishes in the
classical limit of zero frequency. A specific example of the predicted correlation function for a square configuration is
shown in Fig. (5).

It is interesting to compare the exotic correlations with the classical Sagnac e↵ect. For an apparatus of any shape,
the phase shift in length units between light going in two directions around a circuit rotating with angular velocity
⌦0, relative to the local nonrotating inertial frame, is

c�t = 4A0⌦0/c. (41)

The exotic e↵ect produces the tiny fluctuations around this value, due to the imperfect definition of the frame. At
the Planck scale, the two formulas agree. The exotic correlation amplitude for a Sagnac device on any scale (Eq.
40), which is a mean square displacement, is proportional to the classical displacement for an apparatus rotating at
angular velocity ⌦0 = c/2P0, times the Planck length; that is, the exotic phase displacement resembles a Planckian
random walk in transverse spatial position. The correlation can also be visualized as due to rotational fluctuations in
the inertial frame, as discussed below.

The general formula (Eq. 39) respects the symmetries expected for an emergent geometry, and for a Sagnac
apparatus. It appears to have the correct spatial scaling and transformation properties to describe the 1D time
domain correlation for a planar interferometer of any shape. It also makes physical sense; for example, in sections
of the circuit where light is not interacting with matter, the path is straight, so that |dA�(⌧)/cd⌧ | is constant for
corresponding intervals of ⌧ . Thus as expected, the correlation is constant over those intervals; the phase of radiation
is not a↵ected by trajectories of emergent world lines it does not interact with. At reflections, the light path changes
directions and the correlation changes value discontinuously, as expected if the matter fields associated with the
positions of the mirrors are directionally entangled with emergent geometry.

The area quantization from Loop Quantum Gravity described above (Eq. 19) has an exact normalization derived
from the entropy of black hole states that can be used to set an absolute normalization for the correlation function.

For definiteness, consider a square arrangment with sides L. For a square, Eq. (18) gives n ⇡
p

A
n

/A
Q

⇡ LA
�1/2
Q

,

hence a natural unit of length `
Q

= A
1/2
Q

. This fixes an absolute normalization for the signal correlation function,

`
Q

= A
1/2
Q

=
q

2 ln 2~Gc�3/
p

3 (42)

It could be that the appropriate fundamental unit to use in Eq. (39) is not `
P

, but the loop- normalized Planck length
`
Q

(Eq. 42). They are almost the same, but in any case experiments should be designed to reach this value. The
di↵erence would however be measurable in an actual experiment, which measures the absolute value of the Planck
scale.

V. ROTATIONAL FLUCTUATIONS AND COSMIC ACCELERATION

The properties of the Planck scale rotational correlations are scale-free power laws, apart from the Planck scale
itself. Of course systems in the real world are not scale free; systems including stars and their remnant black holes
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Planck area 

Discrete area states: spacing increases with size

2

II. NORMALIZATION FROM LOOP QUANTUM GRAVITY

Discrete spectrum of area states in LQG:

Aj = 8⇡�~Gc

�3
X

i

p
ji(ji + 1) (6)

where ji are half-integers i/2 for integers i. The Immirizi parameter � is estimated from black hole entropy to be

� = ln 2/⇡
p
3. For large areas (i >> 1) we can write the eigenvalues [of the “main sequence” states] as

An ⇡ AQn
2 (7)

for integers n, where

AQ ⌘ 2⇡�~Gc

�3 (8)

is a fundamental Planck area unit. The di↵erence between adjacent area states is

An+1 �An ⇡ 2AQn. (9)

Notice that the spacing grows with n. Thus for larger areas, each area eigenstate is bigger than the last by much more
than a single Planck area pixel. This property reflects the same blurring or loss of relative positional information
on large scales that appears in wave equation solutions, holographic information constraints, and other proposed
“infrared” departures from field theory. It explicitly captures an essential nonlocal Planckian feature not compatible
with a metric-based field approach: the positional relationships of the geometry itself depend on separation, and
degrade over large areas.

Arguments give above suggest that the correlation function for phase variations around a planar circuit scales with
the area divided by the circumference. Not surprisingly, the correlations are related to the shape of the circuit.

Consider an area defined by a planar surface between several world lines, say, the centers of mass of mirrors in
a Sagnac interferometer, all at rest. In classical language, we propagate this surface forward in time by extending
along their world lines in the rest frame. In Quantum General Relativity, there is no independent clock ticking; the
equivalent of a Planckian clock tick is defined relationally by a transition between quantum states of the spacetime
geometry.

Consider the light propagating between the mirrors around this area in two directions from the beam splitter.

For definiteness, consider a square arrangment with sides L. For a square we have n ⇡ LA

�1/2
Q , hence a natural

unit of length `P = `Q = A

1/2
Q . This fixes an absolute normalization for the signal correlation function. In a

square, propagation around opposite sides of the circuit occurs with a maximal separation, and contributes maximal
correlation for a given area.

`Q =

q
2 ln 2~Gc

�3
/

p
3 (10)

The time propagation of the world lines that define the corners of the square surface defines a relationship between
(local) linear propagation around the circuit, and (nonlocal) areal properties of the enclosed space. When the light
comes full circuit to a measurement at the beamsplitter, the wave function of the apparatus “collapses” into a definite
phase di↵erence; the light in the circuit is in a superposition along with di↵erent geometries, each associated with
di↵erent optical phases.

Thus a correlation is created by the discrete geometrical system of world lines across the whole apparatus; thus,
the result depends both on the total area and on the time propagation, which in turn depend on changes in direction
from interactions with world lines of matter that create the circuit. Although we have expressed it as a variance in
arm length, the positional correlation can also interpreted as a variation in time. The relative spatial positions of
reflection events at opposite sides of the circuit, including their time positions, have a quantum ambiguity inherited
from the granularity of the Planckian quantum states of the enclosed space. The e↵ect is not associated with any
locally defined function of the classical metric and its derivatives, which would be independent of the measurement
being made.

This estimate provides an exact normalization for the predicted Sagnac quantum geometrical correlation function
that applies to any shape. It is not su�ciently rigorous to prove that the correlations have a pure-rotational symmetry,
although that appears plausible given the structure of the theory. It is useful as a baseline target for design of
experiments. It suggests that the tools of Loop Quantum Gravity will be su�cient to make adequately precise
predictions for unique quantum-gravitational e↵ects that are realistically measurable in the laboratory.

Difference >> Planck area 
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