Origin of Bright Gamma-ray and Radio Emission at Fast Cloud Shocks of Middle-aged Supernova Remnants

Herman S.-H. Lee

International Top Young Fellow
Japan Aerospace Exploration Agency (JAXA)

References

S.-H. Lee, D. J. Patnaude, J. C. Raymond et al., ApJ, 806, 71 (2015)

Y. Uchiyama, R. D. Blandford, S. Funk et al., ApJL, 723, L122 (2010)

Bright Radio and γ -rays from Middle-aged SNRs

- ★ Many GeV-bright SNRs in our Galaxy found by AGILE, Fermi
- ★ Mostly middle-aged SNRs interacting with molecular clouds
- ★ Evolved, have slow shocks, but bright non-thermal emission (radio, GeV γ-rays)
- ★ Assume pure hadronic origin for luminous GeV γ-ray emission <ngas W_{CR}> ~ a few 10⁵⁰ to 10⁵² erg/cm⁻³
 Lots of CR protons!
- \Rightarrow Bright non-thermal radio emission \longrightarrow B >> μ G (i.e. >> ISM level)

SNR W44 (Yoshiike+ 2013)

Characteristic γ -ray spectra of middle-aged GeV-bright SNRs

- \star Cutoff detected around 250 MeV —> predominant π^0 origin of γ -rays
- **★ Smoking gun evidence** for SNR accelerating CR protons!
- ★ BUT! Many puzzles still remain:
 - Origin of copious CR protons How are they injected and accelerated?
 - Unusual CR spectra, with momentum break
 - Origin of amplified B-field?
 - Evolution stage of these GeV-bright guys? Any connection with young ejecta-dominated and TeV-bright SNRs?

Energy (eV)

Dynamically evolved SNRs

How can they emit bright gamma-rays!?

Radiative Shocks at Evolved SNRs

WISE

★ Evolved SNRs often interacting with clouds

Typical properties:

 $\cdot v_{\text{shock}} > \sim 100 \text{ km/s}$

 \cdot <n₀> ~ 100-1000 cm⁻¹

• T ~ a few 10° K behind shock, molecules dissociated and ionized

- Photoionization precursor by UV photons from downstream
- Bright optical/IR lines from recombining/excited gas
- Spots of OH masers from shocked dense clumps

Basics of SNR Radiative Shocks

★ Transition from Sedov to radiative phase

Transition timescale from $t_{cool} = t_{age}$: $t_{tr} \approx 2.9 \times 10^4 E_{51}^{4/17} n_0^{-9/17} \text{ yr}$ (e.g., Blondin '98)

- ★ Some relevant physical processes
 - 🗹 Recombining plasma
 - Radiative cooling (UV/optical continuum/lines)
 - Photoionization and heating
 - Thermal instability, shock oscillation
 - Molecular chemistry below a few 10² K Collisional cooling with dust grains

(Hollenbach & McKee '89)

"Crushed cloud" Scenario

- ★ Forward shock hits dense medium, drives a cloud shock into it
- ★ Cold dense shell forms behind decelerating cloud shock due to fast radiative cooling
- rms behind nock due to fast Supernova

 Remnant Remnant Radiatively-compressed Remnant Remnant

Molecular Cloud

* Re-acceleration of Galactic CR (GCR) by >1 construct a hydrodynamic model possible with detailed microphysics with detailed mic

★ Gas, B-field and CRs are rapidly compressed

- \star Bright γ -ray from π^0 -decay!
- ★ Bright radio synchrotron emission!

Brems (secondary) Brems (primary)

Analytic model for SMR W44 by Y. Uchiyama et al (2010)

Particle acceleration scenarios at cloud shocks and potential problems

- ★ Two scenarios for particle acceleration through diffusive shock acceleration (DSA):
 - (1) **Re-acceleration** of pre-existing CRs
 - (2) Fresh acceleration of thermal particles
- ★ Fresh acceleration of thermal particles
 - Works quite well at young SNRs
 - Difficulties at radiative shocks of older SNRs
- ★ $v_{sk} > \sim 100 \text{ km/s} \longrightarrow \text{Long } t_{accel} (\sim v_{shock})$ to reach γ -ray emitting energies
- ★ Fast Coulomb loss in dense cloud at superthermal energies competes with early acceleration after injection

Shock Re-acceleration of Pre-existing Galactic CR (GCR)

DSA re-acceleration of GCR with ambient spectra:

$$n_{GCR,p}(p) = 4\pi J_p \beta^{1.5} p^{-2.76} \qquad p > 0.31$$

$$n_{GCR,e}(p) = 4\pi J_e p^{-2} (1 + p^2)^{-0.55} \qquad p > 0.02 \quad \text{(p in GeV/c)}$$

Re-accelerated CR spectra (e.g., Blasi+ 2004, Lee+ 2012)

$$f_1^{\text{cr}}(p) = \frac{3S_{\text{tot}}}{S_{\text{tot}}U(p) - 1} \left\{ \frac{\eta n_0}{4\pi p_{\text{inj}}^3} \exp\left[-\int_{p_{\text{inj}}}^p \frac{dp'}{p'} \frac{3S_{\text{tot}}U(p')}{S_{\text{tot}}U(p') - 1} \right] + \int_{p_{\text{min}}}^p \frac{dp''}{p''} f_{\infty}(p'') \exp\left[-\int_{p''}^p \frac{dp'}{p'} \frac{3S_{\text{tot}}U(p')}{S_{\text{tot}}U(p') - 1} \right] \right\}$$
 re-acceleration

 $4\pi p^2$ f_{inf}(p) = n_{GCR}(p) S_{tot}: total shock compression ratio U(p): gas velocity in precursor (in particle momentum space)

DSA in a partially neutral gas

- ★ For v_{sk} ~ 100 km/s, ionization is partial in photoionization precursor, neutrals exist
- ★ lon-neutral damping of magnetic turbulence
 - —> break in CR diffusion coefficient D(x,p)
 - -> break in CR spectrum (e.g. Bykov+ 2000)
- ★ D(x,p) —> D(x,p) (1 + p/p_{br}) (e.g. Zirakashvili & Ptuskin) i.e., weaker α =2 scatterings for p > p_{br} Reduces p_{max} by easier escape to upstream
- \star fcr(p) —> fcr(p) (p/pbr)-1 for p > pbr
- ★ Fermi γ-ray spectra of mid-aged SNRs suggest a break @ ~10 GeV/c in underlying proton spectrum

$$p_{\rm br} = 10 \left(T_4^{-0.4} n_0^{-1} n_i^{-0.5} B_\mu^2 \right) m_p c$$

(Malkov+ 11, Lee+ 12)

Evolution of post-shock structure with full non-equilibrium ionization (NEI)

$$3/2 \text{ kB dT/dt} = -(n_e n_p/n) \wedge + \Gamma + (\kappa/n) \nabla^2 T$$

Cooling function

- ➤ Follow NEI of 12 elements: H, He, CNO, Ne, Mg, Si, S, Ar, Ca, Fe
- ★ UV/optical continua and lines
- ★ Cooling is fast, close to isochoric

Heating function

- ★ Radiative transfer of strong UV lines and continua
- * Absorption, photoionization
- ★ Heating by photoelectrons

(e.g. Gnat & Steinberg 2009)

Thermal conduction

- \star Conductivity $\kappa = f \kappa$ Spitzer
- ★ f = 0.3 for collisionless plasma, hindrance by B-field

(e.g. Zakamska & Narayan '03, Bale+ '13)

Compare model with SNR W44 broadband spectra

Hydrodynamics and Spectral Evolution

Broadband Spectral Evolution again

GCR re-acceleration model

0.5

(b) Evolution of Integrated Flux

Synch (secondary)

NLDSA (thermal injection) model

W44 is known to be surrounded by a complex of MCs. Size ~100 pc, Mass ~10⁶ M_{sun} (Dame+1986)

Fermi detects γ -rays from vicinity of W44 Must have a different production mechanism

Gamma-ray Evidence for Leaking CRs

After leaving SNR W44, CRs diffuse along the external B-field direction → bipolar morphology

Conclusions

- Fast radiative shocks in clouds can produce bright GeV and radio emission, despite their not-so-impressive velocities
- Re-acceleration and compression of pre-existing cosmic rays in a dense radiatively cooling shell are the keys
- Probably major contributor to GeV + radio emission from shell of mid-aged SNRs directly interacting with molecular clouds
- Mechanisms are quite different from younger SNRs
- For SNR W44, cloud shock in $\langle n_0 \rangle = 200$ cm⁻³ partially ionized medium can produce observed radio and γ -ray fluxes