## A New Picture of Accretion Disk Boundary Layers



Mikhail (Mike) Belyaev UC Berkeley (TAC)

# Disk Boundary Layer

Accretion via a disk onto a WD, NS, protostar...

Case I: accretion proceeds all the way to the surface of the central object.



Case 2: accretion is disrupted by magnetic field before the disk reaches the surface.



### Boundary Layer in Cataclysmic Variables





Both variables have been vertically averaged along z.



Both variables have been vertically averaged along z.

### Disk +BL + Star



### **Three Wave Branches**



0

Evan. Reg.

1.8

2

2.2

2.4

년 년 0.4

0.3

0.2

0.1

1.2

1

1.4

1.6

radius

Lower: Gravitosonic wave in star propagating against direction of the flow. -0.01

-0.02 Middle: 
$$\frac{k_{R,disk}(R_*)}{k_{\phi}} \approx \frac{k_{R,star}}{k_{\phi}}$$



 $R^2 \Sigma \delta V_R^2 \approx {
m const}$  in the absence of dissipation for waves.



 $R^2 \Sigma \delta V_R^2 \approx {
m const}$  in the absence of dissipation for waves.

# The Role of Mach Number

 $\frac{\omega}{k_y} = \pm i \frac{\Delta V}{2}$ 

• Acoustic mode regime (M >> I) 3 modes:  $\frac{\omega}{k_u} = \pm (M-1)s, \ \frac{\omega}{k_u} = 0$ 



### Comparison of Theory to Simulations



Upper

| label | $\operatorname{time}$ | m            | $\Omega_P$ measured | $\Omega_P$ predicted |
|-------|-----------------------|--------------|---------------------|----------------------|
| 2D6a  | 20                    | $\approx 40$ | .84                 | .831                 |
| 2D6b  | 20                    | $\approx 40$ | .835                | .831                 |
| 2D6c  | 20                    | $\approx 40$ | .835                | .831                 |
| 3D9a  | 100                   | $\approx 10$ | .83                 | .850                 |
| 3D9d  | 60                    | 12           | .85                 | .861                 |
| 2D9a  | 30                    | $\approx 29$ | .87                 | .884                 |
| 2D9a  | 280                   | 11           | .815                | .856                 |
| 2D9b  | 30                    | $\approx 24$ | .87                 | .881                 |
| 2D9c  | 30                    | $\approx 32$ | .88                 | .885                 |

#### т

### Middle

| label | $\operatorname{time}$ | m            | $\Omega_P$ measured | $\Omega_P$ predicted |
|-------|-----------------------|--------------|---------------------|----------------------|
| 3D6a  | 10                    | $\approx 42$ | .535                | .502                 |
| 3D6d  | 10                    | $\approx 36$ | .53                 | .503                 |
| 3D9e  | 20                    | $\approx 28$ | .57                 | .515                 |

## Standard BL Picture



What is the mechanism of ang. mom. transport in the boundary layer? Not MRI turbulence since BL is (linearly) stable to MRI ( $d\Omega/dR > 0$ ).

## New BL Picture: Waves Transport AM



## Angular Momentum Transport: MHD



- A.M.T by waves in inner disk and star, MRI throughout disk.
- Gap formation and BL widening due to magnetosonic modes.
- Possible stochastic re-excitation of modes on viscous timescale

### Comparison: waves vs. anomalous viscosity

### Waves:

- Travel long distances before dissipating Nonlocal heating.
- $C_S$  changes sign at the corotation radius of the mode.
- $C_S$  depends on amplitude, wavenumber, and wave branch of excited mode. Modes are potentially stochastically excited.

Anomalous Turbulent Viscosity:  $\nu_{turb} \equiv \alpha s H$ ,  $\alpha \approx constant$ 

- Local dissipation and heating:  $Q_d = \frac{1}{2} \Sigma \nu_{turb} (R d\Omega/dR)^2$
- $C_S$  changes sign where  $d\Omega/dR = 0$ :  $C_S = -2\pi R^3 \Sigma \nu_{\rm turb} d\Omega/dR$
- Turbulent viscosity is typically quasi steady state.

# Conclusion

## Waves Transport Angular Momentum in the Boundary Layer

# Acoustic Instability is like the "MRI" of the boundary layer.

### BL Model #I: Compressible Shear Layer



### Shear Instability for Linear Velocity Profile



### BL Model #2(MHD): Disk + BL + Star

Initial Field:  $\mathbf{B} = 0$  for  $R > R_*$ 

$$\mathbf{B}(R \ge R_*, z) = \begin{cases} \frac{B_0}{R} \hat{\boldsymbol{z}}, & \text{NVF} \\ B_0 \hat{\boldsymbol{\phi}}, & \text{NAF} \\ \frac{B_0}{R} \sin\left[\frac{2\pi}{\lambda_R}(R - R_*)\right] \hat{\boldsymbol{z}}, & \text{ZNF} \end{cases}$$

Stability: Disk is MRI unstable  $\frac{d\Omega}{dR} < 0$ . BL is MRI stable  $\frac{d\Omega}{dR} > 0$ .

Convergence for MRI in disk (NAF geometry):



## The Role of $\beta$





One expects acoustic modes to be modified by terms  $\mathcal{O}(\beta^{-1})$  in the MHD case.

$$\beta \equiv \frac{\rho s^2}{B^2/2\mu}$$

$$v_{\rm ms} = \sqrt{s^2 + v_A^2}$$
$$= s\sqrt{1 + \frac{2}{\gamma}\beta^{-1}}$$

Since  $\beta^{-1} \lesssim .05$ , acoustic modes are not significantly modified by introduction of B field.

$$\beta_{BL}^{-1}/\beta_{disk}^{-1} \sim 1-5$$

### Magnetosonic Modes in the MHD Context



- Magnetosonic modes resemble acoustic modes due to  $\beta^{-1} \lesssim .05$ .
- Amplification of B field in BL partly due to accretion and frozen-in flux law.

## Astrophysical Implications

### Hidden boundary layer problem in CVs:

 $L_{BL}/L_{disk} \sim 1$  in quiescence  $\dot{M} \sim 10^{-12} - 10^{-10}$  (Pandel et al. 2005, Sion et al. 2005)  $L_{BL}/L_{disk} \ll 1$  in outburst  $\dot{M} \sim 10^{-9} - 10^{-8}$  (very little EUV or soft X-ray flux)

Two nearby systems UGem and VW Hyi have BL observed in outburst, but temperatures that are too low by factors of 2-3 according to models.

Why low BL temperature? Solution: waves carry energy away from BL!

### DNOs/QPOs?

Very simplified model, but can generate regular periodicity.

Even in black holes could transition from accretion disk to radiatively inefficient accretion flow share some properties with a BL?

## Future Prospects

• Realistic E.O.S. + cooling or radiative transfer

- Excited gravity modes.
- Connection to DNOs/QPOs.
- Field Amplification (stratified MHD)
  - Does the field amplify to equipartition in the BL?
  - In global simulations is there some global dynamo process going on that amplifies fields? What limits field growth?
- Meridional Spreading Layer
  - Differential rotation in meridional direction leading to possible Kelvin-Helmholtz and baroclinic instabilities.
  - Possible pinch (Tayler-Spruit) or Parker magnetic instabilities.

### Acoustic Modes in Global Simulations



In hydro and MHD simulations, of an isothermal BL, acoustic modes are <u>always</u> present. Dimensionality, azimuthal extent of the simulation domain, Mach number, magnetic field, and stratification only modify the details.

### Instability: const. density, reflecting wall



Plot of  $\delta V_x$  from Athena simulation



### Accretion by Wave Excitation and Dissipation



wave steepens and shocks as it travels into the disk.

## Observing CV Boundary Layer

