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Disk Boundary Layer
Accretion via a disk onto a WD, NS, protostar...

Case 1: accretion proceeds 
all the way to the surface of 

the central object.

Case 2: accretion is disrupted 
by magnetic field before the 

disk reaches the surface.



Boundary Layer in Cataclysmic Variables
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3D MHD BL Simulation 
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Zoom-in of initial conditions around 
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Three Wave Branches
Upper Middle

Lower Wave branches characterized by:

Upper:  Sound  wave in disk propagating in 
the direction of the flow.

Lower:  Gravitosonic wave in star 
propagating against direction of the flow.
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The Role of Mach Number
• KH regime (M << 1) 2 modes: 

• Acoustic mode regime (M >> 1) 3 modes: 
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Comparison of Theory to Simulations
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Standard BL Picture
azimuthal momentum equation constant accretion rate        alpha viscosity

radial momentum equation
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What is the mechanism of ang. mom. transport in the boundary layer? 
Not MRI turbulence since BL is (linearly) stable to MRI (                ).           d⌦/dR > 0
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New BL Picture:  Waves Transport AM 

At            density gap opened in inner disk.  
Simultaneously, accretion onto the star.
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Angular momentum is radiated away 
from the BL into both the star and 
the disk.
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Angular Momentum Transport: MHD 

CS = 0

• A.M.T by waves in inner disk and star, MRI throughout disk. 

• Gap formation and BL widening due to magnetosonic modes. 

• Possible stochastic re-excitation of modes on viscous timescale 
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Comparison: waves vs. anomalous viscosity

Waves:

Anomalous Turbulent Viscosity:

• Travel long distances before dissipating - Nonlocal heating.

•       changes sign at the corotation radius of the mode.

•       depends on amplitude, wavenumber, and wave branch of excited 
mode.  Modes are potentially stochastically excited.

• Local dissipation and heating:                                      

•       changes sign where                   :  

• Turbulent viscosity is typically quasi steady state.
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Conclusion

Waves Transport Angular Momentum 
in the Boundary Layer

Acoustic Instability is like the “MRI” 
of the boundary layer.



BL Model #1: Compressible Shear Layer
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Plot of       for radiation mechanism �V
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BL Model #2(MHD): Disk + BL + Star

Initial Field:

Convergence for MRI in disk (NAF geometry):
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The Role of �
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Magnetosonic Modes in the MHD Context

Bmag sliceBmag vertical average

• Magnetosonic modes resemble acoustic modes due to                 . 

• Amplification of B field in BL partly due to accretion and frozen-in flux law.

ZNF simulation - lower branch
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Hidden boundary layer problem in CVs:

Astrophysical Implications

LBL/Ldisk ⇠ 1 in quiescence Ṁ ⇠ 10�12 � 10�10 (Pandel et al. 2005, Sion et al. 2005)

LBL/Ldisk ⌧ 1 in outburst

˙M ⇠ 10

�9 � 10

�8 (very little EUV or soft X-ray flux)

Two nearby systems UGem and VW Hyi have BL observed in outburst, but
temperatures that are too low by factors of 2-3 according to models.

Why low BL temperature? Solution: waves carry energy away from BL!

DNOs/QPOs? 

Very simplified model, but can generate regular periodicity.

Even in black holes could transition from accretion disk to radiatively inefficient 
accretion flow share some properties with a BL?



Future Prospects

• Realistic E.O.S. + cooling or radiative transfer 

• Excited gravity modes.

• Connection to DNOs/QPOs.

• Field Amplification (stratified MHD) 

• Does the field amplify to equipartition in the BL?

• In global simulations is there some global dynamo process going on 
that amplifies fields? What limits field growth?

• Meridional Spreading Layer 

• Differential rotation in meridional direction leading to possible 
Kelvin-Helmholtz and baroclinic instabilities.

• Possible pinch (Tayler-Spruit) or Parker magnetic instabilities.



Acoustic Modes in Global Simulations

Upper Branch Lower Branch

In hydro and MHD simulations, of an isothermal BL, acoustic modes are 
always present. Dimensionality, azimuthal extent of the simulation domain, 
Mach number, magnetic field, and stratification only modify the details.
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Instability: const. density, reflecting wall
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Accretion by Wave Excitation and Dissipation

Shock density profiles at two different radii.  The sound 
wave steepens and shocks as it travels into the disk.

measured
wave theory

measured
wave theory

CS(R), star CS(R), disk
WKB WKB

⌃(�), R = 1.9⌃(�), R = 1.5

Stress angular momentum current when upper mode is dominant.  The wave 
is generated at corotation in the BL and dissipates in the disk after shocking. 

Mass accretion rate
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Observing CV Boundary Layer

Patterson &
Raymond (1985)

Photoionization of neutral
hydrogen 912 Angstroms.

BB peak, 
optically thick BL

UV X-ray


