Testing varying speed of light cosmologies in future experiments.

Mariusz P. Dąbrowski

Institute of Physics, University of Szczecin, Poland; National Center for Nuclear Research, Warsaw-Otwock, Poland; Copernicus Center for Interdisciplinary Studies, Kraków, Poland

28th Texas Symposium on Relativistic Astrophysics, 17 December 2015

Testing varying speed of light cosmologies in future experiments. - p. 1/21

Based on:

- A. Balcerzak, MPD, PLB **728**, 15 (2014).
- V. Salzano, MPD, R. Lazkoz, PRL **114**, 101304 (2015).
- V. Salzano, MPD, R. Lazkoz, arXiv: 1511.04732.
 - V. Salzano, A. Balcerzak, MPD in progress

Attempts: Einstein (1907), Dicke (1957), J.-P. Petit (1988) (Einstein eqs remain same due to fine-tuned change of c and G), Moffat (1992).

Albrecht & Magueijo model (1998) (AM model) (Barrow 1999; Magueijo 2003): Introduce a scalar field

$$c^4 = \psi(x^\mu) \tag{1}$$

and so the action is

$$S = \int d^4x \sqrt{-g} \left[\frac{\psi(R+2\Lambda)}{16\pi G} + L_m + L_\psi \right]$$
(2)

AM model breaks Lorentz invariance (relativity principle and light principle) so that there is a preferred frame (cosmological or CMB) in which the field is minimally coupled to gravity. The Riemann tensor is computed in such a frame for a constant $\psi = c^4$ and no additional terms $\partial_{\mu}\psi$ appear in this frame (though they do in other frames). Einstein eqs remain the same **except** *c* now varies. Due to the definition of the fine structure constant

$$\alpha = \frac{e^2}{\hbar c} \quad \text{i.e.} \quad \alpha(t) = \frac{e^2}{\hbar c(t)}, \quad \frac{\Delta \alpha}{\alpha} = -\frac{\Delta c}{c},$$
(3)

VSL theories can be related with varying fine structure constant α (or charge $e = e_0 \epsilon(x^{\mu})$ theories (Webb et al. 1999, Sandvik 2002))

$$S = \int d^4x \sqrt{-g} \left(R - \frac{\omega}{2} \partial_\mu \psi \partial^\mu \psi - \frac{1}{4} f_{\mu\nu} f^{\mu\nu} e^{-2\psi} + L_m \right)$$
(4)

with $\psi = \ln \epsilon$ and $f_{\mu\nu} = \epsilon F_{\mu\nu}$. Constraints: Oklo natural nuclear reactor: $\Delta \alpha / \alpha = (0.15 \pm 1.05) \cdot 10^{-7}$ at z = 0.14VLT/UVES quasars: $\Delta \alpha / \alpha = (0.15 \pm 0.43) \cdot 10^{-5}$ at 1.59 < z < 2.92SDSS quasars: $\Delta \alpha / \alpha = (1.2 \pm 0.7) \cdot 10^{-4}$ at 0.16 < z < 0.8Atomic clocks (Rosenband (2008)) at z = 0: $\left(\frac{\dot{\alpha}}{\alpha}\right)_0 = (-1.6 \pm 2.3) \times 10^{-17} \text{yr}^{-1}$. By Webb et al. (PRL 107, 191101 (2011)) (α -dipole $R.A.17.4 \pm 0.9h$, $\delta = -58 \pm 9$: Keck ($\Delta \alpha < 0$) and VLT) as well as other specific measurements of α given in the table below (in parts per million):

Object	Z	$\Delta lpha / lpha$	Spectrograph	ograph Ref.	
HE0515-4414	1.15	-0.1 ± 1.8	UVES	Molaro et al. (2008)	
HE0515-4414	1.15	0.5 ± 2.4	HARPS/UVES	Chand et al. (2006)	
HE0001-2340	1.58	-1.5 ± 2.6	UVES	Agafonowa et al. (2011)	
HE2217-2818	1.69	1.3 ± 2.6	UVES-LP	Molaro et al. (2013)	
Q1101-264	1.84	5.7 ± 2.7	UVES	Molaro et al. (2008)	

UVES - Ultraviolet and Visual Echelle Telescope

HARPS - High Accuracy Radial velocity Planet Searcher

LP - Large Program measurement

VSL - simple generalization of the Einstein equations.

Einstein eqs. the same except c now varies - (ρ - mass density; $\varepsilon = \rho c^2(t)$ - energy density in $Jm^{-3} = Nm^{-2} = kgm^{-1}s^{-2}$)

$$\varrho(t) = \frac{3}{8\pi G} \left(\frac{\dot{a}^2}{a^2} + \frac{kc^2(t)}{a^2} \right) , \qquad (5)$$

$$p(t) = -\frac{c^2(t)}{8\pi G} \left(2\frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{kc^2(t)}{a^2} \right) , \qquad (6)$$

but the continuity eq. contains an extra term (obtained from (5) and (6))

$$\dot{\varrho}(t) + 3\frac{\dot{a}}{a}\left(\varrho(t) + \frac{p(t)}{c^2(t)}\right) = 3\frac{kc(t)\dot{c}(t)}{4\pi Ga^2} \,. \tag{7}$$

Benefits:

Can solve the horizon, flatness and singularity problems.

Can mimick dark energy (see later).

1. Redshift drift (Sandage 1962, Loeb 1998) - the idea is to collect data from two light cones separated by 10-20 years to look for a change in redshift of a source as a function of time.

There is a relation between the times of emission of light by the source τ_e and $\tau_e + \Delta \tau_e$ and times of their observation at τ_o and $\tau_o + \Delta \tau_o$ (VSL adopted):

$$\int_{t_e}^{t_o} \frac{c(t)dt}{a(t)} = \int_{t_e + \Delta t_e}^{t_o + \Delta t_o} \frac{c(t)dt}{a(t)} , \qquad (8)$$

which for small Δt_e and Δt_o transforms into $\frac{c(t_e)\Delta t_e}{a(t_e)} = \frac{c(t_0)\Delta t_o}{a(t_o)}$. Testing varying speed of light cosmologies in future experiments. – p. 7/21 Assuming the ansatz for the variability of the speed of light

$$c(t) = c_0 a^n(t), \qquad n = \text{const.},\tag{9}$$

and bearing in mind definitions of Ω 's, assuming flat k = 0 model we have

$$\frac{\Delta z}{\Delta t_0} = H_0 \left[1 + z - (1+z)^n \sqrt{\Omega_{m0}(1+z)^3 + \Omega_\Lambda} \right]$$
(10)

which can further be rewritten to define new Hubble function $(w_{eff} = w_i + \frac{2}{3}n)$

$$\tilde{H}(z) \equiv (1+z)^n H(z) = H_0 \sqrt{\sum_{i=1}^{i=k} \Omega_{wi} (1+z)^{3(w_{eff}+1)}} .$$
(11)

The VSL redshift drift effect for 15 year period of observations (Balcerzak, MPD 2014).

- If n < 0 (c decreases) then dust matter becomes little negative pressure matter and the cosmological constant became phantom. Varying c mimics dark energy.
- If n > 0 then (growing c(t)) VSL model becomes more like Cold Dark Matter (CDM) model.
- Theoretical error bars are taken from Quercellini et al. 2012 and presumably show that for |n| < 0.045 – one cannot distinguish between **VSL models and** Λ **CDM models.**
- Future observations:
- European Extremely Large Telescope (EELT) (with its spectrograph CODEX (COsmic Dynamics EXperiment)), Thirty Meter Telescope (TMT), the Giant Magellan Telescope (GMT)
- gravitational wave interferometers DECIGO/BBO (DECi-hertz Interferometer Gravitational Wave Observatory/Big Bang Observer). Detection even at $z \sim 0.2$.

2. Measuring *c* with baryon acoustic oscillations (BAO)

Speed of light c appears in many observational quantities. Among them in the angular diameter distance

$$D_A = \frac{D_L}{(1+z)^2} = \frac{a_0}{1+z} \int_{t_1}^{t_2} \frac{c(t)dt}{a(t)}$$
(12)

where D_L is the luminosity distance, a_0 present value of the scale factor (normalized to $a_0 = 1$ later), and we have taken the spatial curvature k = 0(otherwise there would be sin or sinh in front of the integral). Using the definition of redshift and the dimensionless parameters Ω_i we have

$$D_A = \frac{1}{1+z} \int_0^z \frac{c(z)dz}{H(z)},$$
(13)

where

$$H(z) = \sqrt{\Omega_{r0}(1+z)^4 + \Omega_{m0}(1+z)^3 + \Omega_{\Lambda}}.$$
 (14)

Due to the expansion of the universe, there is a maximum of the distance at

$$D_A(z_m) = \frac{c(z_m)}{H(z_m)}.$$
(15)

which can be obtained by simple differentiating (13) with respect to z:

$$\frac{\partial D_A}{\partial z} = -\frac{1}{(1+z)^2} \int_0^z \frac{c(z)dz}{H(z)} + \frac{1}{1+z} \frac{c(z)}{H(z)} = 0$$
(16)

In a flat k = 0 cold dark matter CDM model

$$z_m = 1.25$$
 and $D_A \approx 1230$ Mpc (17)

For standard Λ CDM model of our interest:

$$1.4 < z_m < 1.8.$$
 (18)

The point: The product of D_A and H gives exactly the speed of light c at maximum (the curves intersect at z_m):

$$D_A(z_m)H(z_m) = c_0 \equiv 299792.458 \text{ kms}^{-1}$$
 (19)

if we believe it is constant! (defined officially www.bipm.org; a relative error 10^{-9} by Evenson et al. 1972)

The method to measure *c* - cosmic "rulers" and "chronometers".

In fact what we end in the relation (Salzano, MPD, Lazkoz 2015):

$$c = \frac{D_A}{\left(\frac{1}{H}\right)}.\tag{20}$$

in which D_A with the dimension of length plays the role of a "cosmic ruler", and 1/H giving the dimension of time plays the role of a "cosmic clock/chronometer". The method is then:

- Measure independently $D_A(z)$ and H(z).
- Calculate z_m .
- Calculate the product $D_A(z_m)H(z_m) = c(z_m)$.
- If $c(z_m)$ is not be equal to c_0 , then one measures the deviation from c_0 , i.e. $\Delta c = c(z_m) - c_0$.

Measuring z_m problematic if one uses D_A only (large plateau around z_m makes it difficult to avoid errors from small sample of data – besides, one has binned data, observational errors, and instrinsic dispersion).

However, one can appeal to an independent measurement of $c_0/H(z)$ which is the radial (line-of-sight) mode of the baryon acoustic oscillations surveys (BAO) for which $D_A(z)$ is the tangential mode (e.g. Nesseris et al. 2006). In other words, we have both tangential and horizontal modes as

$$y_t = \frac{D_A}{r_s} \qquad \qquad y_r = \frac{c}{Hr_s},\tag{21}$$

where

$$r_s = \int_{z_{dec}}^{\infty} \frac{cc_s(z)dz}{H(z)}$$
(22)

is the sound horizon size at decoupling and c_s the speed of sound.

The scenarios.

Take background Λ CDM model with an ansatz (Magueijo 2003)

$$c(a) \propto c_0 \left(1 + \frac{a}{a_c}\right)^n \tag{23}$$

where a_c is the scale factor at the transition epoch from some $c(a) \neq c_0$ (at early times) to $c(a) \rightarrow c_0$ (at late times to now). Three scenarios (Salzano, MPD, Lazkoz 2015): 1) standard case $c = c_0$; 2) $a_c = 0.005$, $n = -0.01 \rightarrow \Delta c/c \approx 1\%$ at $z \propto 1.5$;

3) $a_c = 0.005, n = -0.001 \rightarrow \Delta c/c \approx 0.1\%$ at $z \propto 1.5$.

Based on 10^3 Euclid project (Laureijs et al. 0912.0914) mock data simulations (Font-Ribeira et al. 2014):

1) $z_m = 1.592^{+0.043}_{-0.039}$ (fiducial model input $z_m = 1.596$) and $c/c_0 = 1 \pm 0.009$ 2) $z_m = 1.528^{+0.038}_{-0.036}$ (fiducial $z_m = 1.532$) and $c(z_m)/c_0 = 1.00925 \pm 0.00831$ and

$$< c(z_m)/c_0 - 1\sigma_{c(z_m)/c_0} > = 1.00094^{+0.00014}_{-0.00033}$$
 (24)

so that a detection by Euclid of 1% variation at 1σ -level will be possible. 3) $z_m = 1.584^{+0.042}_{-0.039}$ (fiducial $z_m = 1.589$) and $c(z_m)/c_0 = 1.00095 \pm 0.00852$ and

$$< c(z_m)/c_0 - 1\sigma_{c(z_m)/c_0} > = 0.99243^{+0.00016}_{-0.00013}$$
 (25)

so that a detection by Euclid of 0.1% variation at 1σ -level will <u>not be possible</u>.

The results - Matérn(9/2) function approach.

- Better estimation of errors (Seikel at al. arXiv: 1311.6678)
- To determine H(z) the cosmic chronometers (passively-evolving early-type galaxies Jimenez, Loeb Ap.J. 573, 37 (2002)) to directly measure Δt and Δz have been used i.e. $H(z) = -\Delta z/(1+z)\Delta t$
- Euclid will not detect at 1σ (errors larger than in GP approach)
- Possible measurement of 1% of variation of *c* by Square Kilometer Array (SKA) even at 3σ errors on z_M about 30% smaller than from Euclid.
- Measurement of 0.1% variation is possible at 1σ level, but needs reduction of errors by a factor of 10.

	Euclid						
$\Delta c/c_0$	z_M	$c\left(p_{>1}\right)$	$c_{1\sigma} (p_{>1})$	$c_{2\sigma} (p_{>1})$	$c_{3\sigma} (p_{>1})$		
1%	$1.559^{+0.054}_{-0.051}$	$1.00872^{+0.00003}_{-0.00003} (1)$	$0.99993^{+0.00013}_{-0.00024} (0.32)$	$0.99436^{+0.00023}_{-0.00041}$ (0)	$0.98879^{+0.00032}_{-0.00056} (0)$		
0.1%	$1.587_{-0.052}^{+0.058}$	$1.000880^{+0.000006}_{-0.000006} (0.98)$	$0.99199^{+0.00014}_{-0.00024} (0.001)$	$0.98636^{+0.00024}_{-0.00038} (0)$	$0.98072^{+0.00034}_{-0.00053}(0)$		
	SKA						
$\Delta c/c_0$	z_M	$c\left(p_{>1}\right)$	$c_{1\sigma} (p_{>1})$	$c_{2\sigma} \ (p_{>1})$	$c_{3\sigma} (p_{>1})$		
0%	$1.593_{-0.017}^{+0.018}$	$1.^{+3\cdot10^{-7}}_{-4\cdot10^{-7}}$	$0.99708\substack{+0.00003\\-0.00004}$	$0.99524\substack{+0.00006\\-0.00007}$	$0.99339\substack{+0.00008\\-0.00008}$		
1%	$1.561^{+0.017}_{-0.017}$	$1.00873^{+0.00001}_{-0.00001}$ (1)	$1.00585^{+0.00003}_{-0.00003}$ (1)	$1.004036^{+0.00005}_{-0.00005}$ (1)	$1.00221^{+0.00008}_{-0.00009} (1)$		
0.1%	$1.590\substack{+0.018\\-0.017}$	$1.000880^{+0.000001}_{-0.000001} (1)$	$0.99797^{+0.00003}_{-0.00003} (0)$	$0.99612^{+0.00006}_{-0.00006}(0)$	$0.99428^{+0.00008}_{-0.00008}(0)$		
$0.1\% \; (err/3)$	$1.590\substack{+0.006\\-0.006}$	$1.0008800^{+0.0000001}_{-0.0000001} (1)$	$0.999834^{+0.000009}_{-0.000009} (0)$	$0.99917^{+0.00001}_{-0.00001} (0)$	$0.998510^{+0.00002}_{-0.00002} (0)$		
$0.1\% \; (err/10)$	$1.590^{+0.003}_{-0.003}$	$1.0008800^{+0.0000003}_{-0.0000002} (1)$	$1.00032^{+0.00014}_{-0.00018} \ (0.94)$	$0.99996^{+0.00023}_{-0.00029} (0.44)$	$0.99961^{+0.00032}_{-0.00040} (0.10)$		

Observations.

Current:

- Euclid will have 1/10 of the errors of the current missions like WiggleZ Dark Energy Survey (e.g. Blake et al. 2011, 2012).
- Future:
- Dark Energy Spectroscopic Instrument (DESI) (Levi et al. 1308.0847)

Square Kilometer Array (SKA) (Bull et al. 1405.1452)

Wide-Field Infrared Survey Telescope (WFIRST) (Spergel et al. 1305.5425) (esp. having largest sensitivity at potential z_m region i.e. 1.5 < z < 1.6).

Summary:

- Redshift drift test which give clear prediction for redshift drift effect which can potentially be measured by future telescopes (E-ELT, TMT, GMT, DECIGO/BBO).
- Baryon acoustic oscillations test to independently measure the radial D_A and tangential mode c/H of the volume distance at the angular diameter distance maximum z_m .
- In simple terms we have a "cosmic" measurement of the speed of light c with D_A giving the dimension of length being a "cosmic ruler" and 1/H giving the dimension of time being a "cosmic clock/chronometer" i.e.

$$c = \frac{D_A}{\left(\frac{1}{H}\right)}.\tag{26}$$