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WAYS TO TEST GENERAL RELATIVITY

 Looking for inconsistencies in between expansion 

history and growth of structure

 The growth rate of large scale structure is coupled to 

the expansion history via Einstein’s equations.  

These two effects must be consistent. 

 “Trigger parameters”, γ.  The logarithmic growth 

rate                      can be approximated by:

For different gravity models γ has a unique value. 

 Gravitational Slip and Modifications to the 

Poisson Eqn.  (We will focus on this)
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The growth rate of matter perturbat ions can be used to dist inguish between different gravity
theories and to dist inguish between dark energy and modified gravity at cosmological scales as an
explanat ion to the observed cosmic accelerat ion. We suggest here parameterizat ions of the growth
index as funct ions of the redshift . The first one is given by γ(a) = γ̃(a) 1

1+ (a t t c / a)
+ γ

ea r l y

1
1+ (a/ a t t c )

that interpolates between a low/ intermediate redshift parameterizat ion γ̃(a) = γ
l a t e

(a) = γ0 + (1−

a)γa and a high redshift γ
ea r l y

constant value. For example, our interpolated form γ(a) can be used
when including the CMB to the rest of the data while the form γ

l a t e
(a) can be used otherwise. It is

found that the parameterizat ions proposed achieve a fit that is bet ter than 0.004% for the growth
rate in a ΛCDM model, bet ter than 0.014% for Quintessence-Cold-Dark-Mat ter (QCDM) models,
and bet ter than 0.04% for the flat Dvali-Gabadadze-Porrat i (DGP) model (with Ω0

m = 0.27) for the

ent ire redshift range up to zC M B . Wefind that thegrowth index parameters (γ0, γa ) takedist inct ive
values for dark energy models and modified gravity models, e.g. (0.5655, − 0.02718) for the ΛCDM
model and (0.6418, 0.06261) for theflat DGP model. This provides a means for future observat ional
data to dist inguish between the models.

PACS numbers: 95.36.+ x;98.80.Es;04.50.-h

I . I N T ROD U CT I ON

Cosmic acceleration can be caused by a dark energy component in the universe or a modificat ion to the Einstein
field equations of General Relat ivity at cosmological scales. The growth rate of matter perturbations has been the
subject of much recent interest in the literature as a way to dist inguish between one possibility or the other, see for
example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] for a part ial list . Indeed, dist inct gravity theories may havedegenerate
expansion histories but can be dist inguished by their growth rate funct ions.

As usual, the largescale matter density perturbation δ = δρm / ρm satisfies, to linear order, the differential equation

δ̈+ 2H δ̇− 4πGef f ρmδ= 0, (1)

where H is the Hubble parameter and the effect of the underlying gravity theory is introduced via the expression for
Gef f . The distinct behavior of δ for different gravity models can be seen in some of the aformentioned references such
as for example [9, 10]. Equat ion (1) can be writ ten in terms of the logarithmic growth rate f = dlnδ/ dlna as

f + f 2 +
Ḣ

H 2
+ 2 f =

3

2

Gef f

G
Ωm , (2)

where primes denote d/ dln a. Throughout this work we will use the numerically integrated solut ion to this equation
normalized at a = 0 (z = ∞ ). Next, the growth function f is usually approximated using the ansatz [14, 15, 16, 17]

f = Ωγm (3)

where γ is the growth index parameter. Reference [14] made an approximation that applies to matter dominated

modelsand proposed f (z = 0) = Ω0.6
m0 and wasfollowed by a moreaccurateapproximation f (z = 0) = Ω

4/ 7
m0 in [15, 16].

Reference [17] considered dark energy models with slowly varying equation of state, w, and found an expression for γ
as funct ion of Ωm and w. This has been discussed further in more recent references, see for example [3, 19], and also
expanded to models with curvature in [20] and [21].

The approaches of expanding the growth index around some asymptot ic value or early, matter dominated t imes
with Ωm ≈ 1, or those considering specific redshift ranges to approximate γ do not cover other redshift ranges of
interest where observat ional data is available and can constrain the growth parameters or break degeneraciesbetween
them and other cosmological parameters.

∗ Elect ronic address: mishak@utdallas.edu
† Elect ronic address: jnd041000@utdallas.edu
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MODIFIED GROWTH EQUATIONS

Flat Perturbed FLRW Metric.

Modified Growth Equations

or D



Evolving the Modified Gravity 

Parameters: Binning Methods
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FIG. 1: MG parameter evolut ion in redshift and scale modeled using a new hybrid method. We plot here a 3D representat ion
for an example of the new hybrid binned evolut ion for the MG parameter Q(k, a) as given by our Eqs. (12) and (13) for the

parameters Q(k, a) with Q1 = 1.20, Q2 = 1.15, Q3 = 1.05, Q4 = 1.10, zT G R = 2, and kc = 0.01. We can see along the
z-axis how the binned aspect can allow for different best fit values for the MG parameters in the redshift space while along

the k-axis we can see the monotonic evolut ion in k evolving from some large scale (small k) value to a small scale (large k)
value exponent ially. The hybrid paramet rizat ion combines the z-binning method that was shown to be robust with a smooth
evolut ion in k space.

To take advantage of all these techniques, we have developed two versions of our code. One version of the code
uses the funct ional form (11). It provides the opt ion to apply the funct ional form (11) to either Q and R (as done in
[50]) or Q and D. The other version of the code is based on binning methods. It provides the opt ion of the second
approach with tradit ional binning (described above), or alternat ively the third, hybrid approach with two redshift
bins, but the evolut ion in scale evolves monotonically.

In the binning version of the code, we evolve only Q and D. Transit ions between the redshift bin are evolved
following [44, 53] and use a hyperbolic tangent funct ion with a transit ion width zt w = 0.05. In this way the binning
can actually be writ ten funct ionally as (with X represent ing Q or D)

X (k, a) =
1 + X z1

(k)

2
+

X z2
(k) − X z1

(k)

2
tanh

z − zdi v

zt w

+
1− X z2

(k)

2
tanh

z − zT GR

zt w

, (12)

where zdi v is the redshift where the transit ion between the two redshift bins occurs and zT GR is the redshift below
which GR is to be tested. We hard code zT GR = 2zdi v to give us equally sized bins, but this of course is opt ional and
can easily be changed. X z i

(k) represents the binning method for k in the i th z bin. For the suggested hybrid method
it has the form

X z1
(k) = X 1e− k/ k c + X 2(1 − e− k/ kc ) (13)

X z2
(k) = X 3e− k/ k c + X 4(1 − e− k/ kc ),

while with tradit ional binning in principle evolves as

X z1
(k) =

X 1 if k < kc

X 2 if k ≥ kc,
(14)

X z2
(k) =

X 3 if k < kc

X 4 if k ≥ kc.

Here though, we have rather chosen to implement the tradit ional binning method with some control on the transit ion
as:

X z1
(k) =

X 2 + X 1

2
+

X 2 − X 1

2
tanh

k − kc

kt w

(15)

X z2
(k) =

X 4 + X 3

2
+

X 4 − X 3

2
tanh

k − kc

kt w

,
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Both Traditional binning (P1) and Hybrid Method (P2) evolve in redshift as:

Scale Dependence

Hybrid Method (P2)Traditional Binning Method (P1)
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can easily be changed. X z i

(k) represents the binning method for k in the i th z bin. For the suggested hybrid method
it has the form

X z1
(k) = X 1e− k/ kc + X 2(1 − e− k/ kc ) (13)

X z2
(k) = X 3e− k/ kc + X 4(1 − e− k/ kc ),

while with t radit ional binning in principle evolves as

X z1
(k) =

X 1 if k < kc

X 2 if k ≥ kc,
(14)

X z2
(k) =

X 3 if k < kc

X 4 if k ≥ kc.

Here though, we have rather chosen to implement the tradit ional binning method with some control on the transit ion
as:

X z1
(k) =

X 2 + X 1

2
+

X 2 − X 1

2
tanh

k − kc

kt w

(15)

X z2
(k) =

X 4 + X 3

2
+

X 4 − X 3

2
tanh

k − kc

kt w

,



Evolving the Modified Gravity Parameters: 

Functional evolution (P3)
In this evolution method we assume scale independent evolution.  

The parameters evolve in terms of the scale factor as:

As a function of redshift with s = 3
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DATA SETS USED

 CMB temperature and polarization (PLC 2015)  

anisotropy power-spectrum from Planck Surveyor 

 Low-l WMAP Polarization data (with PLC 2013)

 Weak lensing tomography shear-shear cross 

correlations from the CFHTLenS

 Galaxy power spectrum from the WiggleZ survey 

 ISW-galaxy cross correlations of Ho et al. (2008).

 BAO data from 6dF, SDSS DR7, and BOSS DR9.



RESULTS

 P1

 FoM increase of 8% from 2013 to 2015 release 

6

FIG. 1: 68% and 95% 2-D confidence contours for the parameters Qi and Σ i from parameterizat ion P1 for redshift and scale
dependence of the MG parameters. All of the const raints for this evolut ion method are fully consistent with GR at the 68%
level.

I V . R ESU LT S A N D A N A LY SI S

For all results we fit for the MG parameters and relevant nuisance parameters for the various data sets, as well as
the six core cosmological parameters: Ωbh2 and Ωch2, the baryon and cold dark mat ter physical density parameters,
respect ively; θ, the rat io of the sound horizon to the angular diameter distance of the surface of last scat tering; τ , the
reionizat ion opt ical depth; ns, the spect ral index; and ln 1010As, the amplitude of the primordial power spect rum.
As this analysis aims to test general relat ivity, primarily the ΛCDM model, we assume a ΛCDM expansion history
throughout our analysis. Thisassumpt ion should havelit t le impact on our results. Asshown in [83] theMG parameters
are robust to deviat ions from this expansion history, even those which include dark energy with perturbat ions.

95% confidence limits on MG parameters
evolved using form P1

Q 1 [0.49,2.56] Σ 1 [0.97,1.14]

Q 2 [0.05,3.08] Σ 2 [0.84,1.22]

Q 3 [0.30,1.78] Σ 3 [0.97,1.06]

Q 4 [0.28,2.88] Σ 4 [0.90,1.12]

TABLE I I: We list the 95% confidence limits for the MG parameters from using form P1 to define their t ime and scale
dependence. In this t radit ional binning approach we find that all of the MG parameters are fully consistent with their GR
values of 1 at the 95% level.

A . P1 Tr adi t ional B inning

We first , presents our results when using form P1 for the evolut ion of the MG parameters. The one dimensional
marginalized const raints for this parameterizat ion are presented in Table I I. We also show the 2-D marginalized 68%
and 95% confidence contours for the parameters in Fig. 1. Using this evolut ion method, all of the MG parameters
are consistent with their GR value of 1 at the 95% level and no not iceable tensions are evident . This is in cont rast to
the other evolut ion methods we use where some not iceable tensions appear, making those results more revealing as
we will discuss more in the sect ions below.

B . P2 H ybr id Evolut ion

The results when using the hybrid evolut ion method for the MG parameters, P2, are more interest ing. This can
be seen quickly in Table I I I where we give the marginalized const raints on the MG parameters for this evolut ion
method. Of part icular interest are the const raints on the parameter Σ1 where the GR value of 1 lies outside of
the 95% confidence interval. This is very interest ing as it could signal a possible deviat ion from general relat ivity.
Looking at the 2-D confidence contours for the MG parameters in Fig. 2 offers a bit of a reprieve though as the
GR point st ill lies within the 95% confidence level in the 2-D parameter space. While it is well known that when
using a large number of parameters, one of them may seem to indicate new physics when there is none (the so-called
“ look-elsewhere effect ” ), the tension exhibited in the constraints on this parameter, Σ1, which again is only one of
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FIG. 1: 68% and 95% 2-D confidence contours for the parameters Qi and Σ i from parameterizat ion P1 for redshift and scale
dependence of the MG parameters. All of the const raints for this evolut ion method are fully consistent with GR at the 68%
level.

I V . R ESU LT S A N D A N A LY SI S

For all results we fit for the MG parameters and relevant nuisance parameters for the various data sets, as well as
the six core cosmological parameters: Ωbh2 and Ωch2, the baryon and cold dark mat ter physical density parameters,
respect ively; θ, the rat io of the sound horizon to the angular diameter distance of the surface of last scat tering; τ , the
reionizat ion opt ical depth; ns, the spect ral index; and ln 1010As, the amplitude of the primordial power spect rum.
As this analysis aims to test general relat ivity, primarily the ΛCDM model, we assume a ΛCDM expansion history
throughout our analysis. Thisassumpt ion should havelit t le impact on our results. Asshown in [83] theMG parameters
are robust to deviat ions from this expansion history, even those which include dark energy with perturbat ions.

95% confidence limits on MG parameters
evolved using form P1

PLC 2013

Q 1 [0.49,2.56] Σ 1 [0.97,1.14]

Q 2 [0.05,3.08] Σ 2 [0.84,1.22]

Q 3 [0.30,1.78] Σ 3 [0.97,1.06]

Q 4 [0.28,2.88] Σ 4 [0.90,1.12]

PLC 2015

Q 1 [0.32,2.22] Σ 1 [0.96,1.13]

Q 2 [0.27,3.28] Σ 2 [0.90,1.23]

Q 3 [0.27,1.73] Σ 3 [0.97,1.06]

Q 4 [0.55,2.92] Σ 4 [0.93,1.12]

TABLE I I: We list the 95% confidence limit s for the MG parameters from using form P1 to define their t ime and scale
dependence. In this t radit ional binning approach we find that all of the MG parameters are fully consistent with their GR
values of 1 at the 95% level.

A . P1 Tr adi t ional B inning

We first , presents our results when using form P1 for the evolut ion of the MG parameters. The one dimensional
marginalized const raints for this parameterizat ion are presented in Table I I . We also show the 2-D marginalized 68%
and 95% confidence contours for the parameters in Fig. 1. Using this evolut ion method, all of the MG parameters
are consistent with their GR value of 1 at the 95% level and no not iceable tensions are evident . This is in cont rast to
the other evolut ion methods we use where some not iceable tensions appear, making those results more revealing as
we will discuss more in the sect ions below.

B . P2 H ybr id Evolut ion

The results when using the hybrid evolut ion method for the MG parameters, P2, are more interest ing. This can
be seen quickly in Table I I I where we give the marginalized const raints on the MG parameters for this evolut ion



Results cont’d

 P2

 FoM increase of 21% from 2013 to 2015 release 
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FIG. 2: 68% and 95% 2-D confidence contours for the parameters Qi and Σ i from parameterizat ion P2 for redshift and scale
dependence of the MG parameters. As you can see in the first bin, there a tension with the GR value of 1. However, cont rary
to the marginalized 1-D const raints given in Table I I I the GR point is st ill within the 95% confidence region.

eight MG parameters, should nevertheless be explored. We delay the majority of this discussion to §IV D, where
after present ing the results from evolut ion method P3 it becomes more clear that this constraint is driven by a long
standing tension between the weak lensing and CMB data sets.

95% confidence limits on MG parameters
evolved using form P2

Q 1 [0.38,3.43] Σ 1 [1.03,1.37]

Q 2 [0.00,2.86] Σ 2 [0.75,1.07]

Q 3 [0.28,2.46] Σ 3 [0.93,1.14]

Q 4 [0.05,1.99] Σ 4 [0.86,1.14]

TABLE I I I : We list the 95% confidence limits for the MG parameters from using form P2 to define their t ime and scale
dependence. While most of the MG parameters for this hybrid evolut ion method are consistent with their GR values of 1 at
the 95% level, we find a significant tension for the MG parameter Σ in the large scale (small k) low redshift bin (Σ 1).

Correlat ion table
Binning parameterizat ion (P1)

Q1 Q2 Q3 Q4 Σ 1 Σ 2 Σ 3 Σ 4

AC F H T L en S -0.021162 -0.29209 0.015916 0.0056355 -0.0014863 0.083586 0.015755 0.066954

σ8 -0.012168 -0.53048 0.044293 -0.43088 0.045781 -0.61952 0.048845 -0.29894

Ωm -0.0012586 -0.072645 -0.051569 0.11762 -0.08057 -0.085185 -0.033916 -0.17292

Hybrid parameterizat ion (P2)

AC F H T L en S 0.058535 -0.29535 -0.052588 0.095984 -0.14858 0.20636 -0.086038 0.10421

σ8 0.2655 -0.70809 0.12172 -0.33026 0.32713 -0.59009 0.1362 -0.20504

Ωm 0.027229 -0.065934 -0.028016 0.0803 0.01565 -0.15645 0.14932 -0.26513

TABLE IV: Correlat ions between AC F H T L en S, σ8 , Ωm versus the MG parameters of P1 and P2.

C . P3 Scale I ndependent Evolut ion

The results from the scale independent evolut ion method, P3, are also much more revealing than those from P1.
They offer some insight as to the origin of the not iceable tensions exhibited by parameters from P3. The marginalized
95% confidence limits for the parameters Q0, Σ0 and R0 are presented in Table V. The const raints are in general
consistent with those of [26], although a direct comparison is not very simple due to different addit ional probes used in
the two works beside the CFHTLenS data. Now, looking only at these constraints, one might conclude that nothing
interest ing is happening in this parameterizat ion of the MG parameters as all of the parameters are completely
consistent with one at the 95% level.

The 2-D confidence contours for these parameters plot ted in Fig. 3, however, tell a very different story. Looking at
these plots it becomes apparent that there is a not iceable tension in the parameter space, with the parameters showing
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FIG. 2: 68% and 95% 2-D confidence contours for the parameters Qi and Σ i from parameterizat ion P2 for redshift and scale
dependence of the MG parameters. As you can see in the first bin, there a tension with the GR value of 1. However, cont rary
to the marginalized 1-D const raints given in Table I I I t he GR point is st ill within the 95% confidence region.

method. Of part icular interest are the const raints on the parameter Σ1 where the GR value of 1 lies outside of
the 95% confidence interval. This is very interest ing as it could signal a possible deviat ion from general relat ivity.
Looking at the 2-D confidence contours for the MG parameters in Fig. 2 offers a bit of a reprieve though as the
GR point st ill lies within the 95% confidence level in the 2-D parameter space. While it is well known that when
using a large number of parameters, one of them may seem to indicate new physics when there is none (the so-called
“ look-elsewhere effect ” ), the tension exhibited in the const raints on this parameter, Σ1, which again is only one of
eight MG parameters, should nevertheless be explored. We delay the majority of this discussion to §IV D, where
after present ing the results from evolut ion method P3 it becomes more clear that this const raint is driven by a long
standing tension between the weak lensing and CMB data sets.

95% confidence limits on MG parameters
evolved using form P2

PLC 2013

Q 1 [0.38,3.43] Σ 1 [1.03,1.37]

Q 2 [0.00,2.86] Σ 2 [0.75,1.07]

Q 3 [0.28,2.46] Σ 3 [0.93,1.14]

Q 4 [0.05,1.99] Σ 4 [0.86,1.14]

PLC 2015

Q 1 [0.25,2.92] Σ 1 [1.00,1.30]

Q 2 [0.27,3.24] Σ 2 [0.80,1.11]

Q 3 [0.23,2.46] Σ 3 [0.91,1.10]

Q 4 [0.20,2.30] Σ 4 [0.92,1.15]

TABLE I I I : We list the 95% confidence limits for the MG parameters from using form P2 to define their t ime and scale
dependence. While most of the MG parameters for this hybrid evolut ion method are consistent with their GR values of 1 at
the 95% level, we find a significant tension for the MG parameter Σ in the large scale (small k) low redshift bin (Σ 1).

Correlat ion table
Binning parameterizat ion (P1)

Q1 Q2 Q3 Q4 Σ 1 Σ 2 Σ 3 Σ 4

AC F H T L enS -0.021162 -0.29209 0.015916 0.0056355 -0.0014863 0.083586 0.015755 0.066954

σ8 -0.012168 -0.53048 0.044293 -0.43088 0.045781 -0.61952 0.048845 -0.29894

Ωm -0.0012586 -0.072645 -0.051569 0.11762 -0.08057 -0.085185 -0.033916 -0.17292

Hybrid parameterizat ion (P2)

AC F H T L enS 0.058535 -0.29535 -0.052588 0.095984 -0.14858 0.20636 -0.086038 0.10421

σ8 0.2655 -0.70809 0.12172 -0.33026 0.32713 -0.59009 0.1362 -0.20504

Ωm 0.027229 -0.065934 -0.028016 0.0803 0.01565 -0.15645 0.14932 -0.26513

TABLE IV: Correlat ions between AC F H T L en S, σ8 , Ωm versus the MG parameters of P1 and P2.



Results cont’d

 P3

 FoM increase of 43% from 2013 to 2015 release
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95% confidence limits on MG parameters
evolved using form P3

Q0 [0.77,1.99] Σ 0 [0.79,1.16] R 0 [-0.23,1.18]

TABLE V: We list the 95% confidence limits for the parameters Q0 , Σ 0 , and R0 from the scale independent method, P3,
of defining the evolut ion of the MG parameters. These const raints show no apparent tensions with GR. This is in cont rast
to the not iceable tensions that become evident when looking at the 2-D confidence contours shown in Fig. 3. The reason for
this discrepancy is can be explained by looking at the 1-D probability dist ribut ions in Fig. 4 where the non-Gaussianity of the
parameter const raints is easily seen.

FIG. 3: 68% and 95% 2-D confidence contours for the parameters Q0 , Σ 0 , and R0 from the scale independent parameterizat ion,
P3, for the MG parameters. These const raints are consistent with GR a the 95% level, but a tension is evident . The tension is
evident when viewing these plots is not easily seen using the 1-D const raints given in Table V. This is due to the non-Gaussianity
of the probability dist ribut ion for these parameters as further seen in Fig. 4.

some preference for non-GR values. The const raints are also non-Gaussian. The non-Gaussianity of the parameter
const raints is illust rated even bet ter in Fig. 4 where we plot the 1-D probability dist ribut ions for the MG parameters
used in this evolut ion method. The dist ribut ions for the parameters Q0 and R0 are both quite skewed, with a large
tail in one end of each of the dist ribut ions, while dist ribut ion for Σ0 is almost bimodal. As discussed briefly in §IV B
the cause of these tensions in the MG parameter space seems to be a tension between the CMB and weak lensing
data sets as can be seen in figure 5. We discuss this in depth in the next sect ion.

D . Tensions B et ween t he CM B and W eak L ensing D at a Set s

As we have discussed above, there are not iceable tensions with GR in the const raints on the MG parameters from
evolut ion methods P2 and P3. One of the eight parameters from P2 even shows an apparent deviat ion from GR at
the 95% level when looking at the marginalized confidence limits. We have argued briefly above that this tension with
GR in the MG parameter const raints arises from a tension between the CMB (Planck) and weak-lensing (CFHTLenS)
data sets. We present a more in depth argument for that point here.

There has been a known tension between CMB and weak-lensing data sets for quite some t ime (see [62] and
references therein). During an analysis of the data using the ΛCDM model, this tension is usually evident from
comparing the preferred σ8 values of each of the data sets. While the CMB data usually prefers a σ8 ∼ 0.83 [49],
lensing data usually prefers a much lower σ8 ∼ 0.7. Recent ly there has been a lot of work on resolving this tension
between these data sets by allowing for a sterile neut rino species or heavier set of act ive neut rinos [62–65]. In principle
this would resolve the tension, as the neutrinos would suppress in late t ime growth and therefore explain why late
t ime measurements of σ8 from lensing do not match those from the CMB, which infers the value of σ8 from early
universe observat ions rather than direct ly measuring it .

The biggest indicat ion that the tension in the MG parameter space is coming from the known tension between the
two data sets is the bimodal dist ribut ion of Σ0 from P3. This of course indicates that two very different values of
Σ0 are equally preferred by the overall combinat ion of data sets. Since σ8 has been useful to illust rate the tension
between these two data sets before, we explore the values preferred when using P3. We find very interest ing results
upon doing this.

In Fig. 5 we show the 2-D confidence contours in the Σ0, σ8 plane as well as the 1-D probability dist ribut ion of σ8

and Σ0 for different combinat ions of the data sets that highlight the tensions between CMB and weak lensing (WL).
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C. P3 Scale I ndependent Evolut ion

The results from the scale independent evolut ion method, P3, are also much more revealing than those from P1.
They offer some insight as to the origin of the not iceable tensions exhibited by parameters from P3. The marginalized
95% confidence limits for the parameters Q0, Σ0 and R0 are presented in Table V. The constraints are in general
consistent with those of [26], although a direct comparison is not very simple due to different addit ional probes used in
the two works beside the CFHTLenS data. Now, looking only at these constraints, one might conclude that nothing
interest ing is happening in this parameterizat ion of the MG parameters as all of the parameters are completely
consistent with one at the 95% level.

95% confidence limits on MG parameters
evolved using form P3

PLC 2013

Q0 [0.77,1.99] Σ 0 [0.79,1.16] R 0 [-0.23,1.18]

PLC 2015

Q0 [1.21,2.10] Σ 0 [0.85,1.17] R 0 [-0.15,0.61]

TABLE V: We list the 95% confidence limits for the parameters Q0 , Σ 0 , and R0 from the scale independent method, P3,
of defining the evolut ion of the MG parameters. These const raints show no apparent tensions with GR. This is in cont rast
to the not iceable tensions that become evident when looking at the 2-D confidence contours shown in Fig. 3. The reason for
this discrepancy is can be explained by looking at the 1-D probability dist ribut ions in Fig. 4 where the non-Gaussianity of the
parameter const raints is easily seen.

FIG. 3: 68% and 95% 2-D confidence contours for the parameters Q0 , Σ 0 , and R0 from the scale independent parameterizat ion,
P3, for the MG parameters. These const raints are consistent with GR a the 95% level, but a tension is evident . The tension is
evident when viewing these plots is not easily seen using the 1-D const raints given in Table V. This is due to the non-Gaussianity
of the probability dist ribut ion for these parameters as further seen in Fig. 4.

The 2-D confidence contours for these parameters plot ted in Fig. 3, however, tell a very different story. Looking at
these plots it becomes apparent that there is a not iceable tension in the parameter space, with the parameters showing
some preference for non-GR values. The const raints are also non-Gaussian. The non-Gaussianity of the parameter
const raints is illust rated even bet ter in Fig. 4 where we plot the 1-D probability dist ribut ions for the MG parameters
used in this evolut ion method. The dist ribut ions for the parameters Q0 and R0 are both quite skewed, with a large
tail in one end of each of the dist ribut ions, while dist ribut ion for Σ0 is almost bimodal. As discussed briefly in §IV B
the cause of these tensions in the MG parameter space seems to be a tension between the CMB and weak lensing
data sets as can be seen in figure 5. We discuss this in depth in the next sect ion.

D . Tensions B et ween t he CM B and W eak L ensing D at a Set s

As we have discussed above, there are not iceable tensions with GR in the constraints on the MG parameters from
evolut ion methods P2 and P3. One of the eight parameters from P2 even shows an apparent deviat ion from GR at
the 95% level when looking at the marginalized confidence limits. We have argued briefly above that this tension with
GR in the MG parameter const raints arises from a tension between the CMB (Planck) and weak-lensing (CFHTLenS)
data sets. We present a more in depth argument for that point here.



Results cont’d

 P3 – A Hint of Tensions?



TENSIONS BETWEEN THE DATA SETS

 We have seen indications of tensions in the MG 

parameter space for P2 and P3.

 Known tension between CMB and weak lensing, 

notably in constraints on σ8.

 For P3 we get a bimodal σ8, hinting the tension in 

MG parameter space is likely related to known 

tension between the data sets.
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FIG. 5: To illust rate that the tensions in the MG parameters may be arising from tensions between the Planck and CFHTLenS
data sets, we plot the 68% and 95% 2-D confidence contours between Σ 0 and σ8 as well as the 1-D probability dist ribut ion
for σ8 and Σ 0 when using method P3 for evolving the MG parameters. We plot three different data set combinat ions: CM B
which includes all the data except CFHTLens; W L which includes CFHTLenS but not the CMB data; and CM B + W L
which is the combinat ion of all the data. The probability dist ribut ion for σ8 is significant ly bimodal with peaks corresponding
to the preferred values of σ8 for the Planck and CFHTLenS data sets. From the plots of the 2-D confidence contours, one can
see that the bimodality of Σ 0 seen in Fig. 4 is direct ly t ied to that of σ8 with the CFHTLenS data causing a preference for
lower values of Σ 0 and CMB data from Planck having a preference for higher values of Σ 0 .

for the MG parameters when ACFHT L enS is fixed versus when it is varied showing a moderate effect but this is likely
to change for future high precision survey.

V . CON CL U SI ON

In this work we have placed const raints on deviat ions from general relat ivity using the modified growth formalism
and a combinat ion of the latest cosmological data sets including: observat ions of the CMB anisot ropy power spectrum
from the Planck satellite; observat ions of the galaxy power spect rum from the WiggleZ Dark Energy Survey; weak
lensing tomography shear-shear cross correlat ions from the CFHTLenS survey; ISW-galaxy cross correlat ions; and
BAO observat ions from 6dF, SDSS DR7, and BOSS DR9. We have also included in the analysis the effect of galaxy
int rinsic alignment as a systemat ic effect in the weak lensing data. We used a model with a single nuisance parameter
ACFHT L ens to account for int rinsic alignments. Weexpressed the results on modified gravity in terms of the parameters
Q and Σ.

The constraints obtained using these latest data sets give a 40− 53% improvement on the figure of merit for the MG
parameters compared to previous studies [46]. GR is found to be consistent with observat ions according to all MG
parameters when the 2-D marginalized 95% confidence contours are considered. We derived bounds and correlat ions

Correlat ion table
Binning parameterizat ion (P1)

σ8 Ωm

AC F H T L en S 0.38292 0.052433

Hybrid parameterizat ion (P2)

AC F H T L en S 0.32715 0.046858

Funct ional parameterizat ion (P3)

AC F H T L en S 0.12834 0.089536

TABLE VI I: Correlat ions between the int rinsic alignment amplitude parameter AC F H T L en S and the amplitude of mat ter fluc-
tuat ions σ8 as well as the mat ter density parameter Ωm , for the three MG parameterizat ions.

of amplitude of the int rinsic alignment , ACFHT L enS. We included results for CFHTLenS galaxies split into early-type
(red) and late-type (blue), and the opt imized early-type sample (red-foreground-blue-background to maximize GI
int rinsic alignments) of [77]. The amplitude is found consistent with zero for the whole galaxy sample when the
theory is fixed to GR as well as when modified gravity is allowed. But a significant ly (95% CL) non-zero ACFHT L enS is
found when the opt imized early-type sample is used for GR (i.e. ACFHT L enS = 3.54± 0.98 for the 68% CL, consistent
and slight ly improved limits with [77]). We obtain similar detect ion results when our funct ional scale-independent
MG parameterizat ion P3 is used. For our binned scale-dependent MG parameterizat ions (P1 and P2), the bounds
are larger and the zero ACFHT L enS is on the border line of the 95% confidence contours, most likely due to a larger



SUMMARY

 We find up to a 43% improvement on figure of 

merit for the MG parameters between the 2013 

and 2015 Planck data sets.

 A clear tension is present in the parameter Σ

apparently related to the known tension between 

CMB and weak lensing.

 For P3, GR is no longer consistent with the data 

at the 95% CL when considering 2D contours.  

 We need to consider possible systematics related to 

nonlinear structure in the weak lensing data.


