Galactic Magnetic Fields

Andrew Fletcher Newcastle University

- 1. What we know: summary of observed properties.
- 2. How does this compare with dynamo theory?
- 3. Modelling cosmic ray electron propagation.
- 4. Magnetic fields in galaxy formation models.

Synchrotron radiation

Total intensity

$$I_{\rm syn} \propto B_{\perp}^{(1+\gamma)/2}$$

observed

Degree of polarization

$$p = p_0 \frac{\bar{B}^2}{(\bar{B}^2 + b^2)}$$

observed

Polarization angle

$$\psi\cdot\bar{B}_{\!\!\!\perp}\!=0$$

observed

Faraday rotation

$$RM = \frac{\Delta \psi}{\Delta(\lambda^2)}$$

observed

$$R = 0.81 \int_{\log} \frac{n_e}{\text{cm}^{-3}} \frac{\bar{B}_{\parallel}}{\mu \text{G}} \frac{\text{d}l}{\text{pc}} \text{ rad m}^{-2}$$

theoretical

Lots of observations:

Fletcher et al. 2011

Berkhuijsen et al. 2003

Lots of observations:

Reich et al. 2004

Taylor et al. 2009

Magnetic Field Components

Synchrotron	Yes	Yes	Yes
Polarisation	No	Yes	Yes
Faraday Rotation	No	No	Yes

Magnetic Field Components

Synchrotron	Yes	Yes	Yes
Polarisation	No	Yes	Yes
Faraday Rotation	No	No	Yes

Isotropic random field


```
Strength: about 10\mu G (~30 galaxies)
```

Energy density ~ turbulent, thermal, cosmic ray

```
Correlation length: 50—100pc (Milky Way, LMC, M51) also Milky Way 2 estimates <20pc
```

```
Origin: fluctuation dynamo or tangling of mean field or both
```

Anisotropic random field

Observed in: Milky Way, M33, M51, NGC1097, NGC1365 (using different methods)

Strength: about 2— 4μ G (Milky Way, M51)

Degree of anisotropy: $l_{\parallel} \sim 2l_{\perp}$ (M51)

Origin: shear

Or

shock compression

OL

intrinsic to MHD turbulence

Mean field

Typical strength: $B \sim b/(1-3) \sim 4\mu G$

Spiral field lines: $B_{\rm r} \sim (0.2 - 0.4) \ B_{\rm \phi}$ (~20 galaxies) pitch angle similar to spiral arms (8 galaxies)

Weak vertical field in disc: $B_{\rm z} \sim 0.1~B_{\rm r}$ (Milky Way)

Axisymmetric (8 out of 12 modelled galaxies)

Origin: mean-field dynamo ($\alpha\omega$ -dynamo of some form) not a wound-up relic field

Dynamo models for many galaxies

20 galaxies with known magnetic field plus ... gas density, star formation rate, rotation curve.

Test predictions of 3 non-linear $\alpha\omega$ -dynamo models: mean-field strength and pitch angle = $\arctan(B_{\rm r}/B_{\rm o})$

- 1. Equipartition of magnetic & turbulent energies.
- 2. Balance of Coriolis & Lorentz forces.
- 3. Magnetic helicity balance

```
Each mechanism gives B(\Sigma_{\rm gas}^{\rm a}, {\rm SFR^b}, \Omega^{\rm c}, h^{\rm d}, l^{\rm e}, v^{\rm f}) and p(\Sigma_{\rm gas}^{\rm a}, {\rm SFR^b}, \Omega^{\rm c}, h^{\rm d}, l^{\rm e}, v^{\rm f})
```

(h = scale height, l = turbulence scale, v = turbulent velocity)

Van Eck, Brown, Shukurov & Fletcher, 2015

Theory vs. Observations

Mean-field strength

Simple model

Coriolis = Lorentz

Helicity balance

Theory vs. Observations

Mean-field strength

Simple model

Coriolis = Lorentz

Helicity balance

 $p = \arctan(B_r/B_0)$

$$\frac{\partial N}{\partial t} = D \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial N}{\partial r} \right) + \frac{\partial}{\partial E} (\beta E^2 N) + Q + \frac{N}{\tau}$$

diffusion coefficient

$$\frac{\partial N}{\partial t} = D \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial N}{\partial r} \right) + \frac{\partial}{\partial E} (\beta E^2 N) + Q + \frac{N}{\tau}$$

diffusion coefficient

synchrotron & inv. Compton

$$\frac{\partial N}{\partial t} = D \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial N}{\partial r} \right) + \frac{\partial}{\partial E} (\beta E^2 N) + Q + \frac{N}{\tau}$$

diffusion coefficient

synchrotron & inv. Compton

vertical escape

$$\frac{\partial N}{\partial t} = D \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial N}{\partial r} \right) + \frac{\partial}{\partial E} (\beta E^2 N) + Q + \frac{N}{\tau}$$

diffusion coefficient

synchrotron & inv. Compton

vertical escape

$$\frac{\partial N}{\partial t} = D \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial N}{\partial r} \right) + \frac{\partial}{\partial E} (\beta E^2 N) + Q + \frac{N}{\tau}$$

source of CRE, Q(r, E)

3GeV

1.4GHz

diffusion coefficient

synchrotron & inv. Compton

vertical escape

$$\frac{\partial N}{\partial t} = D \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial N}{\partial r} \right) + \frac{\partial}{\partial E} (\beta E^2 N) + Q + \frac{N}{\tau}$$

source of CRE, Q(r, E)

$$D = 2.4 \pm 0.4 \times 10^{-8} \text{cm}^2 \text{s}^{-1}$$

Mulcahy, Fletcher, et al. in prep.

$$D = 2.4 \pm 0.4 \times 10^{-8} \text{cm}^2 \text{s}^{-1}$$

h(r), better than h=const

$$D = 2.4 \pm 0.4 \times 10^{-8} \text{cm}^2 \text{s}^{-1}$$

h(r), better than h=const

D=const, better than D(E)

Mulcahy, Fletcher, et al. in prep.

```
GALFORM (Cole et al. 2000) galaxy formation model:
```

```
M_{
m gas} cold gas mass M_{
m star} stellar mass r_{
m 50} half-mass radius V_{
m 0} circular velocity at r_{
m 50} SFR star formation rate
```

... all as functions of time

GALFORM (Cole et al. 2000) galaxy formation model:

 $M_{
m gas}$ cold gas mass $M_{
m star}$ stellar mass $r_{
m 50}$ half-mass radius $r_{
m 50}$ circular velocity at $r_{
m 50}$ SFR star formation rate

... all as functions of time

Estimate:

S shear

h scale height of disc

 $l_{\rm o}$ turbulence scale

 v_0 turbulent velocity

... and other parameters

GALFORM (Cole et al. 2000) galaxy formation model:

 $M_{
m gas}$ cold gas mass

 $M_{
m star}$ stellar mass

 r_{50} half-mass radius

 V_0 circular velocity at r_{50}

SFR star formation rate

... all as functions of time

Estimate:

S shear

h scale height of disc

 l_0 turbulence scale

 v_0 turbulent velocity

... and other parameters

Compute:

D dynamo number

 D_c critical D

B mean magnetic field

b random magnetic field

GALFORM (Cole et al. 2000)

galaxy formation model:

 $M_{
m gas}$ cold gas mass

 $M_{
m star}$ stellar mass

 r_{50} half-mass radius

 $V_{\scriptscriptstyle 0}$ circular velocity at $r_{\scriptscriptstyle 50}$

SFR star formation rate

... all as functions of time

$B^2 \propto (\rho v_0^2) \left(\frac{D}{D_c} - 1\right) R_u$

Estimate:

- S shear
- h scale height of disc
- l_0 turbulence scale
- v_0 turbulent velocity
- ... and other parameters

Compute:

- D dynamo number
- D_{c} critical D
- B mean magnetic field
- b random magnetic field

 $D(l_0, v_0, h, S, R_u), \quad D_c(R_u), \quad R_u[SFR(\rho)]$

Predicted mean field

PDFs at z=0

Predicted mean field

PDFs at z=0

log(B) vs redshift

Summary

- Know magnetic properties of ~20 disc galaxies.
- Mean-field properties broadly as predicted by αω-dynamo theory.
- Individual galaxies: $\alpha\omega$ -dynamo, constrained by observed parameters, good results.
- Simple dynamo model does not predict *B* of all galaxies: problem with models or data?
- Low frequency, high resolution observations allow cosmic ray electron propagation to be modelled.
- First steps in coupling galaxy evolution models with dynamo (catalogues of galaxies, not individual).

Dynamo model for M31

Non-linear $\alpha\omega$ -dynamo, outflow from disc removes small-scale magnetic helicity.

Observed: rotation curve, star formation rate, gas density, disc scale height.

Compare to observed mean-field: radial profile of B pitch angle = $\arctan(B_{\rm r}/B_{\rm \phi})$

Copyright: MPHR Bonn (B.Beck, E.M.Berkhuljsen & P.Hoernes)

Dynamo model for M31

Non-linear $\alpha\omega$ -dynamo, outflow from disc removes small-scale magnetic helicity.

Observed: rotation curve, star formation rate, gas density, disc scale height.

Compare to observed mean-field: radial profile of B pitch angle = $\arctan(B_{\rm r}/B_{\rm o})$

$$\frac{\partial B_r}{\partial t} = -\frac{\partial}{\partial z} [(\alpha_k + \alpha_m) B_{\phi}] + \eta \frac{\partial^2 B_r}{\partial z^2} - \frac{\partial}{\partial z} (U_z B_r)$$

$$\frac{\partial B_{\phi}}{\partial t} = SB_r + \eta \frac{\partial^2 B_{\phi}}{\partial z^2} - \frac{\partial}{\partial z} (U_z B_{\phi})$$

$$\frac{\partial \alpha_m}{\partial t} = \dots - \frac{\partial}{\partial z} (U_z \alpha_m) + \dots$$

Copyright: MPIfB. Bonn (B.Beck, E.M.Berkhuljsen & P.Hoernes)

M31 dynamo with outflow

