Impact of other scalar fields on oscillons after hilltop inflation # Stefano Orani with Stefan Antusch hep-ph/1511.02336 also Francesco Cefalà and David Nolde # Outline - Preheating in single-field hilltop inflation - Oscillon formation - 3 Parametric resonance of χ sourced by inhomogeneous ϕ - 1 Impact of χ on oscillons - Conclusions $$V(\phi) = V_0 \left(1 - \frac{\phi^6}{v^6} \right)^2$$, with $v \ll m_{\rm Pl}$ # tachyonic preheating $\Rightarrow \phi$ fluctuations grow for $k^2 + V_{\phi\phi} < 0$ - leads to formation of IR dominated spectrum - ends when $\phi = v$ for the first time - for $v \lesssim 10^{-5} m_{\rm pl}$, $\langle \delta \phi^2 \rangle \sim v^2$ during this phase - for $v \gtrsim 10^{-5} m_{\rm pl}$, tachyonic preheating is followed by coherent oscillations of the inflaton $$V(\phi) = V_0 \left(1 - \frac{\phi^6}{v^6} \right)^2$$, with $v \ll m_{\rm Pl}$ ## tachyonic oscillations - $\Rightarrow \phi$ fluctuations grow around $k_p/a \sim 200\sqrt{V0/3}$ - leads to spectrum peaked at k_p - for $v \leq 10^{-1} m_{\rm pl}$, $\langle \delta \phi^2 \rangle \sim v^2$ during this phase - \Rightarrow for $10^{-5} \lesssim v/m_{\rm pl} \lesssim 10^{-1}$, growth of fluctuations at k_p leads to formation of "hill-crossing" oscillons, separated by $\xi \sim 2\pi/k_p$ - oscillons eventually settle around $\phi = v$ $$V(\phi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2$$, with $v = 10^{-2} m_{\rm Pl}$. Movie of ρ from $2D$ simulation with 1024^2 points. #### Oscillons: #### Spatially localized oscillating configurations of a real scalar field - form when scalar field oscillates in potential that is shallower than quadratic away from the minimum - they have a surprisingly long lifetime: stable for large number of oscillations, can survive for many e-folds - arise in many inflationary models favoured by observations #### Interesting and potentially observable consequences: - generate gravitational waves when they form and when they decay - affect the expansion history of the universe possibly leading to signatures in the CMB - .. $$V(\phi,\chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2),$$ with $v = 10^{-2} m_{\rm Pl}$ # parametric resonance of χ sourced by inhomogeneous ϕ - $\Rightarrow \, \chi$ fluctuations grow after $\delta \phi \ll \sqrt{\langle \delta \phi^2 \rangle}$ - exponential growth only if λ is inside resonance band $$V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2),$$ with $v = 10^{-2} m_{\rm Pl}$ # parametric resonance of χ sourced by inhomogeneous ϕ - $\Rightarrow \chi$ fluctuations grow after $\delta \phi \ll \sqrt{\langle \delta \phi^2 \rangle}$ - exponential growth only if λ is inside resonance band - χ develops spectrum peaked at $k \sim k_p$ - ⇒ what is the impact of this resonance on oscillons? $$V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2(\phi^2 + \chi^2),$$ with $v = 10^{-2} m_{\rm Pl}$ #### Consider three cases: I no resonance $\Rightarrow \lambda$ outside resonance band $\langle \delta \chi^2 \rangle$ not amplified and its vacuum fluctuations redshift II "slow" resonance $\Rightarrow \lambda$ inside resonance band $\langle \delta \chi^2 \rangle$ amplified ~ 1 *e*-fold after ϕ has formed oscillons III "fast" resonance $\Rightarrow \lambda$ inside resonance band $\langle \delta \chi^2 \rangle$ amplified during initial phase of oscillons formation $$V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2),$$ with $v = 10^{-2} m_{\rm Pl}$ In what follows: results of lattice simulations of cases I, II and II \Rightarrow solve system of equations: $$\begin{split} \ddot{\phi}(t,\bar{x}) + 3H\dot{\phi}(t,\bar{x}) - \frac{1}{a^2}\bar{\nabla}^2\phi(t,\bar{x}) + \frac{\partial V}{\partial \phi} &= 0\\ \ddot{\chi}(t,\bar{x}) + 3H\dot{\chi}(t,\bar{x}) - \frac{1}{a^2}\bar{\nabla}^2\chi(t,\bar{x}) + \frac{\partial V}{\partial \chi} &= 0\\ H^2 &\equiv \frac{\langle \rho \rangle}{3m_{\rm pl}^2} &= \frac{1}{3m_{\rm pl}^2} \left\langle V + \sum_f \left(\frac{1}{2}\dot{f}^2 + \frac{1}{2a^2}\left|\bar{\nabla}f\right|^2\right) \right\rangle \end{split}$$ on discretized lattice with parameters: | $v/m_{ m pl}$ | $\langle \phi \rangle_{\rm i}/v$ | $\langle \dot{\phi} \rangle_{\mathrm{i}}/v^2$ | $\langle \chi \rangle_{\rm i}/v$ | $\langle \dot{\chi} \rangle_{\rm i}/v^2$ | $H_{ m i}/m_{ m pl}$ | |---------------|----------------------------------|---|----------------------------------|--|-----------------------| | 10^{-2} | 0.08 | 2.49×10^{-9} | 0 | 0 | 1.9×10^{-10} | | D | N | $k_{ m uv}$ | $k_{ m ir}$ | δx | L | | 2 | 1024 | $6.2 \times 10^4 H_{\rm i}$ | $60.5H_{\rm i}$ | $10^{-4}/H_{\rm i}$ | $0.1/H_{\rm i}$ | - at a = 10: many oscillons still present - at a = 22: less oscillons - ⇒ they start decaying before the end of the simulation without parametric resonance of χ the evolution of oscillons is equal to single-field case #### case II: "slow" parametric resonance - at a = 10: many oscillons still present, as in case I - at a = 22: more oscillons, more pronounced \Rightarrow "slow" parametric resonance of χ enhances the oscillons formed by ϕ #### case II: "slow" parametric resonance - at a = 10: many oscillons still present, as in case I - at a = 22: more oscillons, more pronounced - ϕ and χ are correlated: the oscillons get imprinted in the χ field - \Rightarrow "slow" parametric resonance of χ enhances the oscillons formed by ϕ - ϕ and χ are correlated: the oscillons get imprinted in the χ field #### case III: "fast" parametric resonance - at a = 10: no oscillons - at a = 22: no oscillons \Rightarrow "fast" parametric resonance of χ suppresses the oscillons formed by ϕ #### case I: no parametric resonance tail distribution: number of lattice points with energy density $> \rho$ in grey: tail distribution of energy $\rho_g=m_\phi^2g_1^2/2+m_\chi^2g_2^2/2$, where g_1 and g_2 are discrete Gaussian fields with variances $\langle g_1^2\rangle=\langle \phi^2\rangle$ and $\langle g_2^2\rangle=\langle \chi^2\rangle$ #### case I: no parametric resonance - at a = 10: tail distribution stretches to $\rho \sim 300 \langle \rho \rangle$, far away from Gaussian tail \Rightarrow expected when oscillons are present - at a = 22: tail distribution shrunk, but still more spread than Gaussian #### case II: "slow" parametric resonance - at a = 10: tail distribution stretches to $\rho \sim 700 \langle \rho \rangle$, longer than case I tail \Rightarrow more energetic oscillons are present - at a = 22: tail distribution spread to $\rho \sim 3000 \langle \rho \rangle$ but lower around $\rho \sim 100 \langle \rho \rangle$ #### case III: "fast" parametric resonance - at a = 10: tail distribution close to Gaussian tail - at a = 22: tail distribution close to Gaussian tail - ⇒ no oscillons are formed and field fluctuations close to Gaussian ### evolution of ρ in cases I, II and III \Rightarrow larger $\rho_{0,1}$ indicates that more energy is in regions with larger ρ ⇒ more oscillons I no resonance case as single field case (dashed black): $\rho_{0,1}$ for which 10% of the energy is stored in regions with $\rho > \rho_{0,1}$ - $\rho_{0,1}$ grows until a=10, then decreases - II "slow" resonance leads to more energy stored in oscillons - III "fast" resonance suppresses the formation of oscillons, statistics close to Gaussian \Rightarrow the timing of the resonance of χ determines whether the oscillons are enhanced or suppressed ## Summary: - ullet ϕ oscillons form after hill top inflation, during the phase of tachyonic oscillations - when another scalar field χ is present, a parametric resonance of χ sourced by the inhomogeneous ϕ can happen - ullet depending on the occurrence and timing of the resonance, χ can have different impacts on the oscillons: - I if no resonance, χ has no effect on oscillons \Rightarrow as single field case - II "slow" resonance: χ amplified \sim 1 e-fold after ϕ oscillons have formed \Rightarrow oscillons are enhanced, their lifetime extended - III "fast" resonance: χ amplified during formation of oscillons \Rightarrow oscillons are suppressed, and the fields have statistics close to Gaussian # Summary: - \bullet ϕ oscillons form after hilltop inflation, during the phase of tachyonic oscillations - when another scalar field χ is present, a parametric resonance of χ sourced by the inhomogeneous ϕ can happen - ullet depending on the occurrence and timing of the resonance, χ can have different impacts on the oscillons: - I if no resonance, χ has no effect on oscillons \Rightarrow as single field case - II "slow" resonance: χ amplified \sim 1 e-fold after ϕ oscillons have formed \Rightarrow oscillons are enhanced, their lifetime extended - III "fast" resonance: χ amplified during formation of oscillons \Rightarrow oscillons are suppressed, and the fields have statistics close to Gaussian # Outlook: - oscillons affect the expansion history of the universe: effect on equation of state, delay thermalization - their evolution depends on χ , light degree of freedom during inflation \Rightarrow possible effect on CMB scales via dependence on (ϕ_*, χ_*) - production of gravitational waves during formation and decay of oscillons - ...