Impact of other scalar fields on oscillons after hilltop inflation

Stefano Orani

with Stefan Antusch hep-ph/1511.02336

also Francesco Cefalà and David Nolde

Outline

- Preheating in single-field hilltop inflation
- Oscillon formation
- 3 Parametric resonance of χ sourced by inhomogeneous ϕ
- 1 Impact of χ on oscillons
- Conclusions

$$V(\phi) = V_0 \left(1 - \frac{\phi^6}{v^6} \right)^2$$
, with $v \ll m_{\rm Pl}$

tachyonic preheating

 $\Rightarrow \phi$ fluctuations grow for $k^2 + V_{\phi\phi} < 0$

- leads to formation of IR dominated spectrum
- ends when $\phi = v$ for the first time
- for $v \lesssim 10^{-5} m_{\rm pl}$, $\langle \delta \phi^2 \rangle \sim v^2$ during this phase
- for $v \gtrsim 10^{-5} m_{\rm pl}$, tachyonic preheating is followed by coherent oscillations of the inflaton

$$V(\phi) = V_0 \left(1 - \frac{\phi^6}{v^6} \right)^2$$
, with $v \ll m_{\rm Pl}$

tachyonic oscillations

- $\Rightarrow \phi$ fluctuations grow around $k_p/a \sim 200\sqrt{V0/3}$
- leads to spectrum peaked at k_p
- for $v \leq 10^{-1} m_{\rm pl}$, $\langle \delta \phi^2 \rangle \sim v^2$ during this phase
- \Rightarrow for $10^{-5} \lesssim v/m_{\rm pl} \lesssim 10^{-1}$, growth of fluctuations at k_p leads to formation of "hill-crossing" oscillons, separated by $\xi \sim 2\pi/k_p$
 - oscillons eventually settle around $\phi = v$

$$V(\phi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2$$
, with $v = 10^{-2} m_{\rm Pl}$.
Movie of ρ from $2D$ simulation with 1024^2 points.

Oscillons:

Spatially localized oscillating configurations of a real scalar field

- form when scalar field oscillates in potential that is shallower than quadratic away from the minimum
- they have a surprisingly long lifetime: stable for large number of oscillations, can survive for many e-folds
- arise in many inflationary models favoured by observations

Interesting and potentially observable consequences:

- generate gravitational waves when they form and when they decay
- affect the expansion history of the universe possibly leading to signatures in the CMB
- ..

$$V(\phi,\chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2),$$
 with $v = 10^{-2} m_{\rm Pl}$

parametric resonance of χ sourced by inhomogeneous ϕ

- $\Rightarrow \, \chi$ fluctuations grow after $\delta \phi \ll \sqrt{\langle \delta \phi^2 \rangle}$
 - exponential growth only if λ is inside resonance band

$$V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2),$$
 with $v = 10^{-2} m_{\rm Pl}$

parametric resonance of χ sourced by inhomogeneous ϕ

- $\Rightarrow \chi$ fluctuations grow after $\delta \phi \ll \sqrt{\langle \delta \phi^2 \rangle}$
- exponential growth only if λ is inside resonance band
- χ develops spectrum peaked at $k \sim k_p$
- ⇒ what is the impact of this resonance on oscillons?

$$V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2(\phi^2 + \chi^2),$$

with $v = 10^{-2} m_{\rm Pl}$

Consider three cases:

I no resonance

 $\Rightarrow \lambda$ outside resonance band $\langle \delta \chi^2 \rangle$ not amplified and its vacuum fluctuations redshift

II "slow" resonance

 $\Rightarrow \lambda$ inside resonance band $\langle \delta \chi^2 \rangle$ amplified ~ 1 *e*-fold after ϕ has formed oscillons

III "fast" resonance

 $\Rightarrow \lambda$ inside resonance band $\langle \delta \chi^2 \rangle$ amplified during initial phase of oscillons formation

$$V(\phi, \chi) = V_0 \left(1 - \frac{\phi^6}{v^6}\right)^2 + \frac{\lambda^2}{2} \phi^2 \chi^2 (\phi^2 + \chi^2),$$
 with $v = 10^{-2} m_{\rm Pl}$

In what follows: results of lattice simulations of cases I, II and II \Rightarrow solve system of equations:

$$\begin{split} \ddot{\phi}(t,\bar{x}) + 3H\dot{\phi}(t,\bar{x}) - \frac{1}{a^2}\bar{\nabla}^2\phi(t,\bar{x}) + \frac{\partial V}{\partial \phi} &= 0\\ \ddot{\chi}(t,\bar{x}) + 3H\dot{\chi}(t,\bar{x}) - \frac{1}{a^2}\bar{\nabla}^2\chi(t,\bar{x}) + \frac{\partial V}{\partial \chi} &= 0\\ H^2 &\equiv \frac{\langle \rho \rangle}{3m_{\rm pl}^2} &= \frac{1}{3m_{\rm pl}^2} \left\langle V + \sum_f \left(\frac{1}{2}\dot{f}^2 + \frac{1}{2a^2}\left|\bar{\nabla}f\right|^2\right) \right\rangle \end{split}$$

on discretized lattice with parameters:

$v/m_{ m pl}$	$\langle \phi \rangle_{\rm i}/v$	$\langle \dot{\phi} \rangle_{\mathrm{i}}/v^2$	$\langle \chi \rangle_{\rm i}/v$	$\langle \dot{\chi} \rangle_{\rm i}/v^2$	$H_{ m i}/m_{ m pl}$
10^{-2}	0.08	2.49×10^{-9}	0	0	1.9×10^{-10}
D	N	$k_{ m uv}$	$k_{ m ir}$	δx	L
2	1024	$6.2 \times 10^4 H_{\rm i}$	$60.5H_{\rm i}$	$10^{-4}/H_{\rm i}$	$0.1/H_{\rm i}$

- at a = 10: many oscillons still present
- at a = 22: less oscillons
- ⇒ they start decaying before the end of the simulation

without parametric resonance of χ the evolution of oscillons is equal to single-field case

case II: "slow" parametric resonance

- at a = 10: many oscillons still present, as in case I
- at a = 22: more oscillons, more pronounced

 \Rightarrow "slow" parametric resonance of χ enhances the oscillons formed by ϕ

case II: "slow" parametric resonance

- at a = 10: many oscillons still present, as in case I
- at a = 22: more oscillons, more pronounced
- ϕ and χ are correlated: the oscillons get imprinted in the χ field
- \Rightarrow "slow" parametric resonance of χ enhances the oscillons formed by ϕ
- ϕ and χ are correlated: the oscillons get imprinted in the χ field

case III: "fast" parametric resonance

- at a = 10: no oscillons
- at a = 22: no oscillons

 \Rightarrow "fast" parametric resonance of χ suppresses the oscillons formed by ϕ

case I: no parametric resonance

tail distribution: number of lattice points with energy density $> \rho$

in grey: tail distribution of energy $\rho_g=m_\phi^2g_1^2/2+m_\chi^2g_2^2/2$, where g_1 and g_2 are discrete Gaussian fields with variances $\langle g_1^2\rangle=\langle \phi^2\rangle$ and $\langle g_2^2\rangle=\langle \chi^2\rangle$

case I: no parametric resonance

- at a = 10: tail distribution stretches to $\rho \sim 300 \langle \rho \rangle$, far away from Gaussian tail \Rightarrow expected when oscillons are present
- at a = 22: tail distribution shrunk, but still more spread than Gaussian

case II: "slow" parametric resonance

- at a = 10: tail distribution stretches to $\rho \sim 700 \langle \rho \rangle$, longer than case I tail \Rightarrow more energetic oscillons are present
- at a = 22: tail distribution spread to $\rho \sim 3000 \langle \rho \rangle$ but lower around $\rho \sim 100 \langle \rho \rangle$

case III: "fast" parametric resonance

- at a = 10: tail distribution close to Gaussian tail
- at a = 22: tail distribution close to Gaussian tail
- ⇒ no oscillons are formed and field fluctuations close to Gaussian

evolution of ρ in cases I, II and III

 \Rightarrow larger $\rho_{0,1}$ indicates that more energy is in regions with larger ρ ⇒ more oscillons I no resonance case as single field case (dashed black):

 $\rho_{0,1}$ for which 10% of the energy is stored in regions with $\rho > \rho_{0,1}$

- $\rho_{0,1}$ grows until a=10, then decreases
- II "slow" resonance leads to more energy stored in oscillons
- III "fast" resonance suppresses the formation of oscillons, statistics close to Gaussian

 \Rightarrow the timing of the resonance of χ determines whether the oscillons are enhanced or suppressed

Summary:

- ullet ϕ oscillons form after hill top inflation, during the phase of tachyonic oscillations
- when another scalar field χ is present, a parametric resonance of χ sourced by the inhomogeneous ϕ can happen
- ullet depending on the occurrence and timing of the resonance, χ can have different impacts on the oscillons:
- I if no resonance, χ has no effect on oscillons \Rightarrow as single field case
- II "slow" resonance: χ amplified \sim 1 e-fold after ϕ oscillons have formed \Rightarrow oscillons are enhanced, their lifetime extended
- III "fast" resonance: χ amplified during formation of oscillons \Rightarrow oscillons are suppressed, and the fields have statistics close to Gaussian

Summary:

- \bullet ϕ oscillons form after hilltop inflation, during the phase of tachyonic oscillations
- when another scalar field χ is present, a parametric resonance of χ sourced by the inhomogeneous ϕ can happen
- ullet depending on the occurrence and timing of the resonance, χ can have different impacts on the oscillons:
- I if no resonance, χ has no effect on oscillons \Rightarrow as single field case
- II "slow" resonance: χ amplified \sim 1 e-fold after ϕ oscillons have formed \Rightarrow oscillons are enhanced, their lifetime extended
- III "fast" resonance: χ amplified during formation of oscillons \Rightarrow oscillons are suppressed, and the fields have statistics close to Gaussian

Outlook:

- oscillons affect the expansion history of the universe: effect on equation of state, delay thermalization
- their evolution depends on χ , light degree of freedom during inflation \Rightarrow possible effect on CMB scales via dependence on (ϕ_*, χ_*)
- production of gravitational waves during formation and decay of oscillons
- ...