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(Menou et al 2001, Volonteri et al. 2003)



lookback time (Gyr)
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(Ferrarese & Merritt 2000, Gebhardt et al. 2000)

*Where and when do the first
MBH seeds form?

7 - *
Binaries How do they grow along the
cosmic history?

iﬂEVitably *What is their role in galaxy

evolution?

*What is their merger rate?
*How do they pair together and
dynamically evolve?

(Menou et al 2001, Volonteri et al. 2003)
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10 kpc: double quasars
(Komossa 2003)

t Broad HB Peak (km s')

1 pc: -shifted BL (Tsalmatzsa 2011)
-accelerating BL (Eracleous 2012)

Initial Shift

|

1 kpc: double peaked NL
(Comerford 2013)

0.0pc:-X-shaped sources (Capetti 2001)
-displaced AGNS (civano 2009)

10 pc: double radio cores
(Rodriguez 2006)




Population parameters

1-Galaxy merger rate <-----> MBHB merger rate
affects the number of sources at each frequency —-> N,

2-MBH mass - merging galaxy relation
affects the mass of the sources —> M_
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Local dynamics

1-Accretion (when? how?)
affects the mass of the sources -—->M_

2-MBHB - environment coupling (gas & stars)
affects the chirping rate of the binaries -—> y
affects the eccentricity ---> chirping rate —-> y & single source detection
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1-Population parameters

Minimal assumptions:

-Whenever there is a galaxy merger there is a SMBHB merger
(pending a DF timescale that does not affect major mergers)

-SMBH are connected through the properties of galaxies through
scaling relations

-SMBHB are circular GW driven in the PTA band

]
]

Even so....

The MBHB merger rate is poorly
determined:

/dlg(M)dt [yr!
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-The ga|axy merger rate is not khow Chirp mass [M,] Chirp mass [M,
very well observationally

1]

yr

-The MBH-galaxy scaling relations has
uncertainties and scatter (MBH
measurements are hard)

d2N/dlg(M)dt [y
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(Lentati et al. 2015,
Arzoumanian et. 2015,
Shannon et al. 2015)
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Predictions shown here
(AS 2013):

>Assume circular GW
driven binaries

>Efficient MBH binary
merger following
galaxy mergers
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>Uncertainty range
takes into account:
ﬁ -merger rate

-MBH-galaxy relation
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(AS 2008, 2013; Ravi et al. 2012, 2015; Roebber er al. 2015; Kulier et al. 2014;
McWilliams et al. 2014)




(EPTA, Lentati et al. 2015)
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2-Local Dynamics:Coupling with the environment

1. dynamical friction (Lacey & Cole 1993, Colpi et al. 2000)

® from the interaction between the DM halos to the formation of the BH binary
® determined by the global distribution of matter, driven by stars and/or gas

® cfficient only for major mergers against mass stripping

2. ha rdening of the bina 'Y (Quinlan 1996, Miloslavljevic & Merritt 2001, Sesana
et al. 2007, Escala et al. 2004, Dotti et al. 2007)

® 3 bodies interactions between the binary and the surrounding stars
the binding energy of the BHs is larger than the thermal energy of the stars

o
® the SMBHSs create a stellar density core ejecting the background stars
o

Dynamical drag caused by a thick circumbinary disk

. emission of gravitational waves (peters 1964)
takes over at subparsec scales
leads the binary to coalescence

The two MBH separation has to decay from 10 kpc to 10°pc
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STELLAR DRIVEN BINARIES GAS DRIVEN BINARIES
assuming stars are supplied self-consistent solution for the

to the binary loss cone at a binary-disk interaction with no
constant rate: leakage in the cavity:
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extrapolation
@f=1yr-!

10-° 10-8

observed frequency |Hz]

(Kocsis & AS 2011, AS 2013, Ravi et al. 2014, McWilliams et al. 2014)




Eccentric binaries emit a whole spectrum of harmonics (Peters &
Mathews 1963) with the consequence that:

1) they evolve faster (their dE/dt Is proportional to (1-e2)"?

2) their emission moves toward higher frequency.

— T — T ————rrr Point 1) causes a drop in
the number of sources
emitting at each frequency
(analogue to environmental
coupling)

Point 2) modifies the
spectrum of the individual
system

Both effects contribute to
the shaping of the
spectrum, but 1) is the
dominant
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(NANOGrav, Arzoumanian et al.

Simple broken-power law model mimicking possible
environmental effects (Sampson et al. 2015)
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Depending on the prior on the amplitude, current non detection
provide strongllittle evidence of a background turnover
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Similarly one can play the game of
placing constraints on specific
parameters by keeping everything
else fixed:

-density of the MBHB environment
-eccentricity



probability density
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(Middleton et al.

A PTA detection of a
stochastic GWB will
essentially only constrain the
overall MBHB merger rate.

Need combination with other
observation to be informative
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*It is not smooth
*It is not Gaussian

*Single sources
might pop-up

*The distribution of
the brightest
sources might well
be anisotropic




MNumber of sources

Sources can be localized in the sky
(AS & Vecchio 2010, Ellis et al. 2012).

For example, the largest SNR
source shown in the previous slide
can be located by SKA in the sky
with a sky accuracy <10deg?

We can recover
multiple sources in
PTA data

(Babak & AS 2012
Petiteau et al. 2013)

100 1000 10 100
Number of pulsars




(EPTA, Babak et al. 2015)

Search 1D

MNoise treatment

N pulsars
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The array sensitivity is function
of the sky location, we can build
sensitivity skymaps

;,ﬁkj,r sensitivity at f = 7 nHz
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Data are not yet very
constraining, we can rule out very
massive systems to ~200Mpc,
well beyond Coma




Doggybag

Current limits are getting extremely interesting, probing the predicted
range of vanilla models for the cosmic SMBHB population

PTAs can in principle provide unique information about the dynamics
and merger history of SMBHBSs (e.g. merger rate density, environmental

coupling, eccentricity, etc.)

However:
> considering current observational uncertainties,
even vanilla models cannot be confidently ruled out

> detection statistics: is the signal stochastic?

> basically any step towards a more realistic modelling tend to make
the signal dimmer:
*coupling with the environment (but how efficient?)
*eccentricity (maybe a critical ingredient)

> stalling might be an issue in the
most massive low density ellipticals
* time delays?
* triple interactions common?
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