Simultaneous X-ray Radio Observations of Mode-switching Radio Pulsars PSR B0943+10 and PSR B1822-09

Wim Hermsen^{1,2}

Collaborators:

L. Kuiper¹, J.W.T. Hessels^{3,2}, J. van Leeuwen^{3,2}, D. Mitra⁴, J.M. Rankin^{2,5}, B. Stappers⁶, G.A.E. Wright⁷, R. Basu^{4,8}, A. Szary²

¹ SRON Netherlands Institute for Space Research

- ² Astronomical Institute "Anton Pannekoek", University of Amsterdam
- ³ ASTRON Netherlands Institute for Radio Astronomy
- ⁴ National Centre for Radio Astrophysics, Ganeshhkind, Pune, India
- ⁵ Physics Department, University of Vermont, Burlington, USA
- ⁶ Jodrell Bank Center for Astrophysics, Manchester, UK
- ⁷ Astronomy Centre, University of Sussex, Falmer, Brighton, UK
- ⁸ Institute of Astronomy, University of Zielona Gora, Zielona Gora, Poland

University of Amsterdam

Netherlands Institute for Space Research

Outline

- Introduction: Discovery of synchronous X-ray and radio-mode switching in pulsar PSR B0943+10. (Hermsen et al. 2013, Science 339, 436)
- Simultaneous radio and X-ray observations of PSR B1822-09: results
- Conclusions / Dilemma's

The radio-mode switching PSR B0943+10

Characteristics

- P = 1.10 s
- $\dot{P} = 3.5 \times 10^{-15}$
- $\dot{E} = 1.0 \times 10^{32} \text{ erg s}^{-1}$
- $B_p = 2.0 \times 10^{12} G$
- $T = 5.0 \times 10^6 \text{ yr}$
- nearly aligned rotator

LOFAR 140 MHz

• mode switching between radio B(right) and Q(uiet) modes

PSR B0943+10: also a moding Precurser (PC)

140 MHz

GMRT 320 MHz

Radio-mode switching a local or global phenomenon ?

Observational Evidence for Rapid, Global, Magnetospheric Changes:

- Mode switching and correlated v changes for PSR B1931+2421 (Kramer et al. 2006, Science 312, 549)
- Similar behaviour for PSR J1841-0500 and PSR J1832+0029 (Camilo et al. 2012; Lorimer et al. 2012)
- Mode changing, nulling, profile-shape changes likely due to change in magnetospheric particle current flow (Lyne et al. 2010, Science 329, 408)

Theoretical Support for Rapid, Global, Magnetospheric Changes

- Mode switching is global: a range of Quasi-stable magnetospheric configurations is expected (Goodwin et al. 2004, Timokhin 2006)
- The non-linear system is proposed to suddenly switch between specific states, each having a specific emission beam and spin-down rate (Timokhin 2010)

X-ray – Radio campaign on PSR B0943+10

- Simultaneous observations for ~140 ks in November/December 2011: XMM-Newton with LOFAR, GMRT and Lovell
- Discovery of Synchronous X-ray and Radio Mode Switches

(Hermsen et al. 2013, Science 339, 436)

- When PSR B0943+10 switches from the radio B(right) mode to the radio Q(uiet) mode the X-ray flux (in **anti correlation)** more than doubles (times 2.45)!
- In the radio Q mode **thermal pulsed emission** is added to the X-ray flux in the B mode.

Discovery of Synchronous X-ray and Radio Mode Switches

XMM-Newton EPIC PN + MOS-1 & MOS-2

Detection of pulsed X-ray emission in radio Q mode

Difference between X-ray emissions in radio B and Q mode is addition of pulsed X-ray emission in Q mode !

X-ray pulse is aligned with radio main pulse with precursor

PSR B0943+10: X-ray spectrum **pulsed emission** in radio **Q-mode**

• Best fit: BB; χ2/v = 1.14/3, ~78%

•
$$N_{H} = 4.3 \times 10^{20} \text{ cm}^{-2}$$
 (fixed)

- BB: **k**T = 0.319 ± 0.012 keV
- F_{BB} (0.5-8 keV)= (7.8 ± 1.6) 10⁻¹⁵ erg cm⁻² s⁻¹ (unabsorbed)

Thermal pulsed emission

X-ray spectral characteristics

Data from a new long X-ray – radio campaign on PSR B0943+10 is being analysed

Many unanswered questions, e.g.:

- The polar cap region is viewed continuously: how to produce a 100% pulsed thermal component in the Q mode ?
- What causes disappearance (or largely suppresses) a thermal X-ray pulse switching from weak chaotic radio Q to bright ordered B mode ?

New campaign: Mode-switching Pulsar PSR B1822-09

Characteristics: PSR B0943+10	PSR B1822-09
• P = 1.10 s	0.77 s
• $\mathbf{P} = 3.5 \times 10^{-15}$	5.2 x 10 ⁻¹⁴
• $\dot{E} = 1.0 \times 10^{32} \text{ erg s}^{-1}$	4.5 x 10 ³³ erg s ⁻¹
• $B_p = 2.0 \times 10^{12} G$	6.4 x 10 ¹² G

- $T = 5.0 \times 10^6 \text{ yr}$ 2.3 x 10⁵ yr
- nearly aligned rotator

nearly orthogonal rotator, or nearly aligned? (Malov, Nikitina 2011)

• PSR B1822-09 also switches between radio B(right) and Q(uiet) mode

PSR B1822-09 @ 624 MHz (GMRT)

Mode switching

- 1: Precursor
- 2: Main pulse
- 3: Interpulse

Typical mode durations less than 5 minutes

SRON

PSR B1822-09: XMM-Newton observation times (ks) September, October 2013, and March 2014

Date /CCDs	10/09 2013	18/09 2013	22/09 2013	28/9 2013	30/09 2013	06/10 2013	10/03 2014	12/03 2014	Mode
PN	23.1	21.1	24.8	21.1	27.9	21.1	21.1	34.1	Large Window
MOS-1	24.8	22.8	26.5	22.8	29.6	22.8	22.8	35.8	Small Window
MOS-2	24.8	22.8	26.5	22.8	29.6	22.8	22.8	35.8	Small Window

Simultaneous radio observations with the WSRT and partly Lovell and GMRT

Total XMM-NewtonPN194.3 ksMOS-1209.3 ksMOS-2209.3 ks

Maximum likelihood analysis of X-ray skymaps:

Two sources are detected separated by 5.3"±0.5"

- A soft-spectrum source at the position of PSR J1822-09, dominating below 1.4 keV
- A hard-spectrum source dominating above 1.4 keV

W. Hermsen, 28th Texas Symposium, Geneva, December 2015

PSR J1822-09; 15

X-ray timing analysis (PN + MOS1&2)

Discovery of X-ray pulsation in energy band 0.4-1.4 keV

Phase folding with ephemeris from Jodrell Bank: events selected with 15" from pulsar position

 Broad sinusoidal X-ray pulse shifted in phase by 0.094 with respect to radio main pulse (0.0)

9.8 o detection significance

X-ray timing analysis (PN+MOS1&2)

Phase-resolved spatial analysis: <u>background subtracted profile</u>

- Pulsed fraction for 0.2-1.6 keV: ~35%
- No indication for X-ray pulse from radio interpulse

PSR B1822-09

Phase resolved spatial analysis: all counts from pulsar

Significant pulse detections for 0.5-1.6 keV

Pulsed fraction 0.85-1.6 keV: 60-65% !

→ Spectrum pulsed emission much harder than that of unpulsed emission

PSR B1822-09: X-ray mode switching ?

PSR B1822-09, 5.55 hrs observing with the WSRT

S/N of detection in bins of 10 s

RON

PSR B1822-09: phase distributions for Q and B intervals Phase-resolved spatial analysis for 10 bins

0.4-1.4 keV

Spectral analysis

- Distance PSR B1822-09:
 - -- Upper limit 1.9 kpc (Johnston et al. 2001),
 - -- DM = 19.9 pc cm⁻³, $N_{H} = 6.1 \times 10^{20} \text{ cm}^{-2}$
 - -- Often quoted d~1 kpc (e.g. Zhou et al. 2005).
- N_H at ~1.9 kpc is ~3 10^{21} cm $^{-2}$
- N_H is in initial analysis treated as free parameter

PRELIMINARY

PSR 1822-09: Total-emission spectrum, fit model $BB_{cool} + BB_{hot} (BB_1 + BB_2)$

• Best fit:
$$BB_1 + BB_2$$
; $\chi_r^2/v = 1.14/28$,
• $N_H = (2.40^{+0.43}_{-0.41}) 10^{21} \text{ cm}^{-2}$
• BB_1 : $kT_1 = 0.083 \pm 0.004 \text{ keV}$ (T=0.96 MK)
• $R_1 = (2039^{+427}_{-332}) \text{ m}$ (d = 1 kpc)
• $F_1 (0.5 - 2 \text{ keV}) = (3.2 \pm 0.2) 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1} (\text{unabsorbed})$
• BB_2 : $kT_2 = 0.187^{+0.026}_{-0.023} \text{ keV}$ (T=2.2 MK)
• $R_2 = (98^{+59}_{-25}) \text{ m}$ (d = 1 kpc)

• $F_2 (0.5-2 \text{ keV}) = (6.5 \pm 1.1) \ 10^{-15}$ erg cm⁻² s⁻¹ (unabsorbed)

Similar BB-fits three musketeers: Geminga, PSR B0656+14 & PSR B1055-52

PSR 1822-09: spectral fits for $BB_{cool} + BB_{hot}$ ($BB_1 + BB_2$)

PSR B1822-09: cartoon, consistent with spectral and timing analysis

Broad cool pulses MP + IP	Narrow hot pulses MP + IP	Summed total profile
kT ≈ 0.080 keV	kT \approx 0.180 keV	Shaded area is detected pulse above flat `unpulsed' level (should contain contributions
R ≈ 1700 m	R ≈ 100 m	of underlying cool and hot pulses)

Left: Spectrum pulsed emission can be well fitted with single BB with kT in between that of the cool and hot components of the total emission.

Right: Pulsed spectrum can also be explained as the sum of a cool and hot component with temperatures fixed at the values of the total emission.

Dilemma: X-ray results contradict radio-derived geometry ?

Radio: nearly orthogonal rotator, impact angle small but X-ray pulsed fraction 0.8 – 1.6 keV 60-<u>65%</u> !

If luminosities primary and antipodal spots equal: pulsed fraction ~9%

Dilemma: X-ray results contradict radio-derived geometry ?

Radio: nearly orthogonal rotator, impact angle small but X-ray pulsed fraction 0.8 – 1.6 keV 60-<u>65%</u> !

If luminosity antipodal spot half of luminosity primary pole: pulsed fraction ~41%

SRON

- For nearly aligned rotator
- hot X-ray pulse is excluded (but PSR B0943+10?)

Conclusions

- PSR B1822-09 has been detected with XMM-Newton with average pulsed fraction ~35% (0.4-1.4 keV), and 60-65% for 0.85-1.6 keV
- The pulse profile is sinusoidal; maximum at ~0.1 phase from the peak of the radio main pulse.
- X-ray emission from PSR1822-09 can be explained as emission from opposite poles, each with cool (T≈1MK, R≈2 km) and hot (T ≈ 2.2 MK, R≈100m) components.
- For PSR B1822-09 as well as for PSR B0943+10 the X-ray pulse profiles difficult to reconcile with radio-derived geometries.
- There is no evidence for simultaneous X-ray-radio mode-switching by PSR B1822-09. What causes this difference with PSR B0943+10?
- We still do not know what causes X-ray mode switching seen for PSR B0943+10 (local vs global ? More insight from new long campaign on PSR B0943+10 ?)

Thank you for listening!

