Extragalactic circuits, black holes, and the ultimate energy transfers

Texas Symposium,
December 2015
in Geneva, Switzerland

Philipp Kronberg
Dept of Physics
University of Toronto, Canada

Abstract

Energy, and electrical circuits in Space, and their connection to supermassive black holes

- A non-negligible fraction of Supermassive Black Hole's (SMBH) rest mass energy gets transported into extragalactic space -- by remarkable processes in jets which are not completely understood. The bulk of the energy flow from the SMBH (e.g. $\gtrsim 10^7~M_{\odot}$) appears to be electromagnetic, rather than via a particle beam flux. Also, remarkably, these jets contain current flows that remain largely intact over multi-kpc distances. Accretion disk models have independently calculated that a $^{\sim}$ $10^8 M_{\odot}$ SMBH should generate \mathcal{O} 10^{18} 10^{19} Ampères in the vicinity of the SMBH.
- I describe the first and best yet observational estimate of the current flow along the axis of a jet that extends from the nucleus of the active elliptical galaxy in 3C303. This is $I \sim 10^{18}$ Ampères at a projected 40 kpc from the AGN. This points to the existence of cosmic scale electric circuits. The power flow is $P = I^2Z$, watts, where $Z \sim 30$ Ohms, which is O the *impedance* of free space $Z(\varepsilon_0, \mu_0)$, (ε_0, μ_0) being the permittivity and magnetic permeability. These, in turn, uniquely determine c. The electrical potential drop ($\sim 10^{20}V$) across the jet diameter (which is \approx a few times $r_{\rm G}$ of the SMBH) is, interestingly \approx that required to accelerate the Ultra High Energy Cosmic Rays (UHECR).
- Jets and high energy outflows have different progenitors, forms, sizes, luminosities, and ambient environments
- This talk focuses on
 - electromagnetically dominated (Poynting flux) jets from supermassive BH's
 - 2. located in a rarified intergalactic environment -i.e. not in rich galaxy clusters

 $Z_0 = \frac{3}{c}\beta$

BH (magnetic + CR) energy output ($\gtrsim 10^{60}$ ergs) is "captured" within a few Mpc, $compare\ with$ $\eta\ (photons), \approx 10\% of\ M_{BH}c^2\ (not\ captured)\ appears$ $comparable\ to\ \eta\ (CR+B),$

2147+816 giant radio galaxy

Analysis of ≈ 70 GRG images Kronberg, Dufon, Li, Colgate ApJ 2001

z=0.146

2.6 Mpc

8 FRII-like GRG's, w. detailed, multi-λ obs. & analysis Kronberg, Colgate, Li, Dufton ApJL 2004

- •Willis & Strom, 1978,80
- •Kronberg, Wielebinski & Graham.1986,
- •Mack et al. A&A 329, 431, 1998
- •Schoenmakers et al. 1998,2000
- •Subrahmanian et al. 1996
- •Feretti *et al* 1999
- •Lara et al. 2000
- •Palma et al. 2000

0634-20 2.8CM -20°241 -20°301 -20°36 -200421 6h34m40s 6h34m24s 6h34m08s

1.4 GHz

VLA 1.4GHz

Faraday RM(radians/m²)

Effelsberg 100m. Telescope 10.6 GHz

Kronberg, Wielebinski & Graham $E_{CR} \approx 10^{19} \left(\frac{B}{3\mu\text{G}}\right) \left(\frac{L}{1 \text{ Mpc}}\right) \text{ eV}$

$$\mathbf{P}_{CR} \approx 10^{19} \left(\frac{B}{3\mu G} \right) \left(\frac{L}{1 \text{ Mpc}} \right) \text{ eV}$$

ENERGETICS:

Mind the gap!!

Accumulated energy $(B^2/8\pi + \varepsilon_{CR}) \times (volume)$ from "mature" BH-powered radio source lobes

Giant Radio Galaxies (GRG) capture the highest fraction of the BH energy released to the IGM

GRG's are the best BH energy calorimeters available

Overview of radio observational aspects

- Kpc-scale jets are likely electromagnetically dominated : $(P=I^2Z)$
- Important measurables are <u>power flow</u> and <u>current</u> (I)
- Jets and lobes that proceed from a Supermassive Black Hole(SMBH) are good candidates for Hadron acceleration to the highest energies
- Why measurements of jet current are currently difficult at resolution scales of e.g. the NRAO JVLA.

Knots and Hotspots of 3C303 (z=0.141, D ~ 600 Mpc) Radio (VLA) and X-Ray (CHANDRA)

P. Kronberg, Can.J. Phys <u>64</u>, 449, 1986
P. Leahy & R. Perley, Astr. J. <u>102</u>, 537, 1991

J. Kataoka, P. Edwards, M. Georganopoulos, F. Takahara, & S. Wagner A&A <u>399</u>, 91, 2003

3C303 1.4GHz, 1.4" resolution

3 spheroid ``islands'' Each has high Mag field ordering & current signatures

jet continues to here

jet disruption point

Knot ``E3' has a 'measured <u>⊽RM</u> vector

4.9GHz VLA image at <u>0.3</u>" resolution

Compare scales

The M87 jet on the physical scale of one 3C303 "knot"

M87 Knot cocoons are ~ 12,000 times (vol.) smaller than those in 3C303! SMBH-powered jets are very *scale-independent* systems!

Plasma Diagnostics of the 3C303 jet

Lapenta & Kronberg ApJ <u>625</u>, 37-50, 2005

- (1) <(Total energy flow rate)> $= E^{T}_{min}/\tau \approx 2.8 \times 10^{43} \, \tau_7^{-1} \, erg/s$
- (2) Jet's total photon luminosity radio \rightarrow X-ray = 1.7 x 10⁴² erg s⁻¹
 - → Radiative dissipation from the jet is ≈10% of the energy flow along jet!
- (3) Measure **knots**' synchrotron luminosity & size (D_{knot}) → B^{knot}int=10⁻³G
- (4) Measure Faraday rotation isolated in the knots, $\underline{RM} \propto n_{th} \times \underline{B^{knot}}_{int} \times \underline{D}_{knot}$ gives n_{th} in knots for 3C303) $\rightarrow n_{th} \approx 1.4 \times 10^{-5}$ cm⁻³ (a low, extragalactic level density!)
 - (3) & (4) \rightarrow estimate of V_A within knots : $V_A^{knot} \propto \mathbf{B}^{knot}_{int} n^{-0.5}$ RESULT: $V_A^{knot} \approx \mathbf{c}$. i.f. in the <u>relativistic</u> range -- V_A^{rel}

How to estimate the <u>jet current</u>? -- what measurements are required:

- 1. Need sub-arcsec resolution, + adequate sensitivity in Stokes IQU at \geq 2 frequencies,
- 2. Faraday RM distribution over the jet $\frac{\Delta \chi}{\Delta \lambda^2}(x, y)$ at a common angular resolution
- 2. High resolution X-ray image (\sim kev) gives estimated T and ρ of gas surrounding the jet
- 4. Need nearby sky RM's to establish the <u>zero-level</u> of <u>RM</u>

 i.e. subtract <RM_{backgnd sources}> from the RM's in the jet image

 (normally only feasible outside a galaxy cluster)

P.P. Kronberg Can J. Phys 64, 449, 1986 (original results)
P.P. Kronberg, R.V.E. Lovelace, G. Lapenta, & S.A. Colgate, ApJL 741, L15, 2011

Transmission line analogy:

Line Voltage:

$$V_0 = -\frac{1}{2}r_0 \int_0^{\bar{r}_2} d\bar{r} E_r(\bar{r}) = \frac{r_0}{3^{1/4}} \frac{B_0}{\sqrt{\mathcal{R}}}$$

= 3.4 x 10^20 beta Volts

Axial current:

$$\mathcal{R} \equiv r_0/r_g \geqslant 1.$$

$$I_0 = -\frac{1}{2} c r_2 B_{\phi}(r_2) = \frac{V_0}{\mathcal{Z}_0}$$

This leads to a straightforward <u>electrical circuit analogue</u> for BH energy transfer into "empty" space

<u>P.P. Kronberg. R.V.E. Lovelace, G. Lapenta & S.A. Colgate Ap.Jl. 741, L15 2011</u> R.V.E. Lovelace & P.P. Kronberg, MNRAS 430, 2828-2835, 2013

- Low thermal density around knots suggests dominance of a Poynting flux
- $P \sim 10^{37}$ watts of directed e.m. power, and $I = 3.3 \times 10^{18}$ ampères of axial current, directed (in this case) away from the BH (Sign of ∇RM gives the I direction).

Poynting jet's electrical properties: (current, impedance, voltage):

$$I_0 = cr_2 B_{\phi(r_2)} = \frac{V_0}{Z_0} \approx 3 \times 10^{18} \text{ Amps (MKS)}$$

$$Z_0 = \frac{3}{c} \beta \text{ (cgs)} = 90 \beta \text{ Ohms (MKS)}$$

$$V_0 = \frac{r_0 B_0}{3^{1/4} \sqrt{R}} = 2.7 \times 10^{20} \text{ Volts(MKS)}$$

 $\beta = \frac{U_z}{}$

 \lesssim 1, where r1, r2 are the inner & outer transmission line radii (Lovelace & Ruchi, 1983)

Concept of Poynting fluxdominated energy flow from a BH accretion disc

Pre 1900 - problem of telegraphic signal (energy) propagation over very long distances -- telegrapher's equations:

Time and space-dependent perturbations of a Poynting-flux jet are described by the Telgrapher's equations,

$$\frac{\partial \Delta V}{\partial t} = -\frac{1}{C} \frac{\partial \Delta I}{\partial z} , \qquad \frac{\partial \Delta I}{\partial t} = -\frac{1}{L} \frac{\partial \Delta V}{\partial z} , \qquad (20)$$

where $(\Delta V, \Delta I)$ represent deviations from the equilibrium values (V_0, I_0) . The equations can be combined to give the wave equations O. Heaviside, Electromagnetic Theory 1893

Van Nostrand NY,

$$\left(\frac{\partial^2}{\partial t^2} - u_\varphi^2 \frac{\partial^2}{\partial z^2}\right) (\Delta V, \ \Delta I) = 0 ,$$
(21)

where

$$u_{\varphi} = \frac{1}{\sqrt{LC}} = c \left[1 + \frac{1}{2\Gamma^2} + \frac{1}{2\Gamma^2} \ln \left(\frac{r_3}{r_2} \right) \right]^{-1/2},$$
 (22)

Magnetic Insulation: It breaks down (less common): when $|E| \ge |B|$

Example: where B approaches zero on some surface. At this point, normal Resistive MHD does not apply.

Specific examples:

- 1. In a magnetic reconnection layer,
 or (relevant here)
- If an electromagnetic jet encounters a "load" with an inductive component, the reflected ΔI and ΔV are no longer exactly in phase. This can create $|\mathbf{E}| \geq |\mathbf{B}|$, for some distance and time period Δt ,--- e.g. ~1000yr in the 3C303 jet, --
 - --- creating conditions for coherent particle acceleration

Why are jet currents so difficult to measure?

Jet – associated ΔRM (& ∇RM) are intrinsically small.

They also need to be isolated from other source-intrinsic, and ambient (e.g. cluster ICM) emission

example: Δ RM only ~ 10rad m⁻² across the 3C303 jet. Even for I~10¹⁸ A at z = 0.14, & 10rad m⁻², the angle of rotation is only 25° at 1 GHz.

This detectability problem gets worse at higher z

e.g. for 3C9 at
$$z = 2.012$$
, $\Delta RM = 10$ rad m⁻² becomes $\frac{10}{(1+2.012)^2} = 1.1$ rad m⁻² - undetectable!

LOFAR frequencies down to ~200MHz can detect RM's at low $n_{\rm IG}$ and $B_{\rm IG} \leq 10^{-6}$ G

Future magnetoplasma probes of jets will require::

- 1. Much higher resolution (<< 1") <u>transverse</u> to the jet "spine".
- 2. higher brightness sensitivity.
- 3. frequency ranges $\lesssim 1$ GHz for Faraday RM imaging.

Low freq. telescopes ($\lesssim 1 \text{GHz}$) will achieve these goals

recent references:

R.V.E. Lovelace & P.P. Kronberg, *MNRAS* **430**, 2828, 2013 P.P. Kronberg & R.V.E. Lovelace, *EPJ Web of Conf.* **99**,13005, 2015

Summary:

- 1. We have estimated the circuit parameters for a supra-galaxy--scale jet.
- 2. Applied it to observations of the jet in radio galaxy 3C 303.
- 3. We have developed a simple <u>transmission line</u> model for extragalactic Poynting flux jets.
- 4. Introduced the concept of <u>magnetic insulation</u>, relevant to VHE particle acceleration, and applied it for a jet-ambient plasma $\beta \approx 10^{-5}$,

Philipp Kronberg, Texas Symposium, Geneva 2015

END