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Primordial Magnetic fields - Basic MHD

Magnetohydrodynamics (MHD)
I Maxwell’s equations:

Ò · B = 0, Ò ◊ E = ≠ˆtB, Ò ◊ B = 4fij

I Continuity equation for mass density fl: ˆtfl + Ò(flv) = 0
I Navier-Stokes equations:

fl (ˆtv + (vÒ) v) = ≠Òp + µ�v + (⁄ + µ)Ò (Òv) + f

For the magnetic field and the turbulent fluid it follows therefore

ˆtB =
1

4fi‡
�B + Ò ◊ (v ◊ B)

ˆtv = ≠ (vÒ) v +
(Ò ◊ B) ◊ B

4fifl
+ fv .

8 Günter Sigl
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Primordial Magnetic Fields: Full-Blown Numerical MHD Simulations 
versus semi-analytical methods based on transport equations

Andrey Saveliev, PhD thesis
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A General Approach to the Chiral Magnetic Effect
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For the electron chiral asymmetry N
5

⌘ NL � NR and the magnetic helicity
H ⌘ R d3rB ·A the electromagnetic chiral anomaly gives

d

dt

 
N

5

� e2

4⇡2

H
!

= 0 , (1)

and e2H/(4⇡2) is just the Chern-Simons number of the electromagnetic field. The
generalized Maxwell-Ampère law

r⇥B =
@E

@t
+ µ

0

(j
em

+ jcB) , with jcB = � e2

2⇡2

µ
5

B , (2)

and Ohm’s law for j
em

in the absence of external currents gives

E ' �v ⇥B + ⌘

 
r⇥B +

2e2

⇡
µ
5

B

!
, (3)

where ⌘ is the resistivity and the e↵ective chemical potential is given by

µ
5

=
µL � µR

2
+ V

5

=
µL + VL � µR � VR

2
, (4)

where V
5

is a possible e↵ective potential due to a di↵erent forward scattering
amplitude for left- and right-chiral electrons. Inserting this into the induction

1
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equation the MHD is modified to

@tB = r⇥ (v ⇥B) + ⌘�B� 2e2

⇡
⌘µ

5

r⇥B . (5)

This equation is similar to the mean field dynamo equation which also has growing
solutions. Neglecting the velocity term the evolution equations for the power
spectra Mk and Hk [note UB =

R
d ln kMk and H =

R
d ln kHk] now become

@tMk = �⌘k2

 
2Mk +

e2

2⇡2

µ
5

Hk

!

@tHk = �⌘
⇣
2k2Hk + 32e2µ

5

Mk

⌘
. (6)

Integrating over ln k gives

@tH = �⌘

Z
d ln k

⇣
2k2Hk + 32e2µ

5

Mk

⌘
. (7)

In an FLRW metric these are comoving quantities and conformal time.
Now express N

5

in terms of µ
5

,

N
5

= c(T, µe)V µ
5

, with c(T, µe) =
µ2

e

⇡2

+
T 2

3
for µ2

e + T 2 � m2

e , (8)

2



8

where the second expression holds for relativistic electrons. Applying this to
Eq. (1) we get

dH =
4⇡2

e2
dN

5

=
4⇡2V c(T, µe)

e2
dµ

5

. (9)

We now also have to include the chirality-flip rate

Rf '
✓
me

T

◆
2

R ⇠
✓
me

T

◆
2

e2

T 2

100T 3 ⇠ m2

e

T
=

T
5

T
H(T

5

) , (10)

where we have used ⇠ e2/T 2 for the cross section and ⇠ 100T 3 for the relativistic
target number density. This becomes comparable to the Hubble rate for T =
T
5

' 80TeV.
Inserting Eq. (7) into Eq. (9) then yields

@tµ5

= � e2⌘

2⇡2V c(T, µe)

Z
d ln k

⇣
k2Hk + 16e2µ

5

Mk

⌘
� 2Rf

�
µ
5

� µ
5,b

�
. (11)

Here was added a damping term Rf due to the chirality-flips and µ
5,b = V

5

+ µs

is the equilibrium value of the e↵ective chemical potential µ
5

in the absence of
resistivity. Both a possible e↵ective potential V

5

and a possible source term 2Rfµs

due to other processes such as electroweak interactions with other species as for
example neutrinos can contribute to µ

5,b.

3
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From Eq. (6) growing solutions exist for wavenumbers

k < k
5

⌘ k
5

(µ
5

) ⌘ 2e2

⇡
|µ

5

| . (12)

This follows from using helicity modes in Eq. (5) which gives

@tb
±
k

= ⌘k

 
⌥2e2

⇡
µ
5

� k

!
b±
k

, (13)

Thus if the condition Eq. (12) is fulfilled, the helicity with the opposite sign as µ
5

will grow whereas the same sign helicity will decay and the absolute value of the
helicity will be close to the maximal value given by

|Hk|  8⇡Mk

k
. (14)

In contrast, for k >⇠ k
5

both helicities will decay with roughly the resistive rate.
For the helicity with opposite sign to µ

5

the first term in Eq. (13) corresponds to
a growth rate

Rc(k) =
2e2

⇡
⌘k|µ

5

| ' 2⇥ 1010
✓
TeV

T

◆✓
k

k
5

◆✓
µ
5

T

◆
2

H(T ) , (15)

4
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The total rate Rc � Rr reaches its maximum value R
max

= ⌘k2
5

/4 at k = k
5

/2
which for

µ
5

T
>⇠ 10�5

✓
T

TeV

◆
1/2

(16)

is larger than the Hubble rate. Furthermore, Eq. (11) shows that for growing
modes |µ

5

| shrinks for either sign of µ
5

. Therefore, the chiral magnetic insta-

bility transforms energy in the electron asymmetry N
5

into mag-

netic energy. This is because by definition of the chemical potential µ
5

the
energy U

5

associated with the chiral lepton asymmetry is given by

dE
5

= µ
5

dN
5

= V c(T, µe)µ5

dµ
5

, U
5

=
V c(T, µe)µ2

5

2
. (17)

Imagine now an initial chiral asymmetry µ
5,i and no magnetic field. Since the

sign of dµ
5

is opposite to the sign of µ
5,i, Eq. (9) also confirms that the magnetic

helicity will have the opposite sign as µ
5,i. The growth rate peaks at wavenumber

k = k
5

/2 given by Eq. (12) and for a given mode k growth stops once |µ
5

| has
decreased to the point that Eq. (12) is violated. Since the instability produces

5
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maximally helical fields saturating Eq. (14), with Eq. (9) we obtain

dUB ' dMk5 ' k
5

|dHk5|/(8⇡) ' k
5

|dH|/(8⇡) = V c(T, µe)µ5

dµ
5

,

�Em ' V c(T, µe)(µ2

5,i � µ2

5

)

2
. (18)

Adding Eqs. (17) and (18) gives a total energy U
tot

= U
5

+UB ' V c(T, µe)µ2

5,i/2
which only depends on the initial asymmetry µ

5,i. The maximal magnetic energy
density is then given by

�UB

V
<⇠

c(T, µe)µ2

5,i

2
' µ2

5,iT
2

6
, (19)

where the last expression follows from Eq. (8). Eq. (11) also implies that @tµ5

= 0
if

µ̃
5

=
Rfµ5,b � 2e2⌘

⇡c(T,µe)

R
d ln kkMk

V

⇣
Hk

8⇡Mk/k

⌘

Rf +
4e4⌘

⇡2c(T,µe)
UB
V

, (20)

where Hk has again be normalized to its maximal value given by Eq. (14). For
negligible magnetic fields µ̃

5

' µ
5,b, as expected and magnetic field modes with

k < k
5

(µ
5,b) are growing exponentially with rate Rc(k) � Rr given by Eq. (15).

6
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The magnetic field terms start to dominate for

UB

V
>⇠

c(T, µe)Rf

4e4⌘
' 10⇡

3e4
T 2m2

e ' 2⇥ 105T 2m2

e , (21)

In this case Eq. (20) gives

µ̃
5

' � ⇡

2e2UB

Z
d ln kkMk

✓
Hk

8⇡Mk/k

◆
. (22)

This is what Ruchayskiy et al call tracking solution. Note that µ̃
5

from Eq. (20)
varies with rates in general much slower than Rf and Rc. Also, since in general
µ̃
5

6= µ
5,b, the two terms in Eq. (11) do not vanish separately but only tend to

compensate each other and are both roughly constant since µ
5

is approximately
constant. Due to Eq. (9) the magnetic helicity changes linearly in time with a
rate

@tH ' 8⇡2V c(T, µe)

e2
Rf(µ5

� µ
5,b) . (23)

Since helicity is nearly maximal this also implies that the magnetic energy also
roughly grows or decreases linearly with time, depending on the sign of (µ

5

�
µ
5,b)/H.

7
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Combining Eqs. (6), (11) and (17) the rate of change of the total energy is

@tUtot

= @tUB + @tU5

= (24)

= �2⌘

Z
d ln kMk

8
<

:(k � k
5

)2 + 2k
5

k

"✓
Hk

8⇡Mk/k

◆
sign(µ

5

) + 1

#9=

;

�2RfV c(T, µe)µ5

�
µ
5

� µ
5,b

�
,

where k
5

= k
5

(µ
5

) is given by Eq. (12). Since the expression in large braces in
the integrand in Eq. (24) is non-negative due to Eq. (14) this shows that, apart
from the term proportional to µ

5,b which describes a possible energy exchange
with external particles, the total energy can only decrease due to the finite resis-
tivity and the chirality-flip rate. The only equilibrium state in which the total
energy is exactly conserved is given by µ

5

= µ
5,b and a magnetic energy which is

concentrated in the mode k = k
0

= k
5

(µ
5,b) and has maximal magnetic helicity

with the opposite sign as µ
5,b, Hk0 = sign(µ

5,b)8⇡Mk0/k0.
The evolution of µ

5,b due to energy exchange with the background matter can
be modeled as follows: In absence of magnetic fields multiplying Eq. (11) with
c(T, µe) and using Eq. (8) gives

@tn5

= �2Rf [n5

� c(T, µe)µ5,b] = Rwnb � 2Rfn5

, (25)

8



14

where the gain term was written as a parity breaking electroweak rate Rw times
the number density nb of the background lepton species. This implies

nb = 2c(T, µe)
Rf

Rw
µ
5,b ,

µ
5,b

T
' 0.1gb

Rw

Rf
, (26)

where the second expression holds for gb non-degenerate relativistic fermionic
degrees of freedom. The energy Ub associated with these background particles is
thus given by

Ub

V
=

Z µ5,b

0

µ0
5,bdnb =

Rf

Rw
c(T, µe)µ

2

5,b ⇠ 3⇥ 10�3g2b
Rw

Rf
T 4 , (27)

where the last expression again holds in the non-degenerate relativistic case. Note
that for µ

5,i ⇠ µ
5,b ⇠ (Rw/Rf)T Eq. (27) is of order (Rw/Rf)T 4 whereas U

5

from Eq. (17) is of order (Rw/Rf)2T 4. Both energies vanish in the limit of parity
conservation, Rw ! 0, as it should be. In terms of initial equilibrium chiral
potential µ

5,bi and for Rw
<⇠ Rf the maximal magnetic energy is then

�UB

V
<⇠

Rf

Rw
c(T, µe)µ

2

5,bi ⇠ 3⇥ 10�3g2b
Rw

Rf
T 4 . (28)

Setting @tUb = �@tU5

to ensure that the interactions conserve energy and using
the last term in Eq. (24) for the contribution of the interactions to @tU5

yields an

9
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equation for the evolution of µ
5,b,

@tµ5,b = Rw
µ
5

µ
5,b
(µ

5

� µ
5,b) . (29)

When Ub is included in U
tot

the second term in Eq. (24) is absent in the time
derivative of U

tot

. The total energy is then dissipated exclusively through resistive
magnetic field damping. Eq. (29) indicates that µ

5,b typically changes with the
rate Rw. An stationary state is reached if µ

5,b = µ
5

and the magnetic field
concentrates in k

5

= k
5

(µ
5,b) with maximal helicity of sign opposite to µ

5,b. This
requires magnetic field growth rates larger than the Hubble rate, see Eq. (16).

µ
5

is continuously recreated with a rate Rfµ5,b ⇠ 0.1gbRwT , see Eq. (26), and
a time-independent or slowly varying µ

5

can be established which is given by
Eq. (20). This can be the case, for example, in a supernova or a neutron star due
to URCA processes which absorb left-chiral electrons with a rate Rw and turn
them into neutrinos that subsequently escape the star.

Due to Eq. (6) amplification stops and resistive damping sets in when 2⌘k2
5

t ⇠
1, thus

k
5

⇠ k0
5

✓
t
0

t

◆
1/2

, µ
5

⇠ µ0

5

✓
t
0

t

◆
1/2

. (30)

10
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The Chiral Magnetic Effect in Hot Supernova Cores

The spin flip rate is dominated by the modified URCA rate 

The resistivity η=1/(4πσ) is given by the conductivity 

Comparing the velocity and chiral magnetic term for a velocity spectrum v(l)~(l/L)n/2 for 
integral scale L at the length scale of maximal growth l=2π/k5=(π/e)2/|µ5| gives 

For vrms ~ 10-2 in a supernova this is ≲ 1 if n ≳ 4/3.
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The Chiral Magnetic Effect around the Electroweak 
Transition

Conductivity σ ~ 70 T 

preliminary result: No significant magnetic field enhancement under realistic conditions, 
only resistive damping rate is somewhat slowed down 

also, turbulence would play a more important role than in hot neutron stars

Pavlovic, Leite, Sigl, in preparation
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1.) The chiral magnetic effect can lead to growing, helical 
magnetic fields in the presence of a chiral asymmetry in the 
lepton sector.

2.) However, spin flip interactions can damp the chiral 
asymmetry faster than the magnetic field growth rate.

3.) In hot supernova cores the chiral magnetic effect could play 
a significant role. This is less likely in the early Universe.
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Outlook
1.) Role of turbulence unclear: If velocity term > chiral term the 
chiral magnetic effect could be considerably modified. 
Suppression if magnetic fields transported toward smaller 
scale ? Enhancement if transported toward larger scales 
(inverse cascade) ?

2.) Spatially varying chiral potential should be discussed 
quantitatively


