Mildly obscured active galaxies and the diffuse X-ray background

Valentino Esposito Roland Walter

Texas Symposium 2015, Geneva 15/12/2015

Submitted to A&A

Outline

• Review of the Cosmic X-ray Background and the limits of our knowledge.

 Stacking ~10⁹s of Swift/BAT data for different AGN classes.

Implication on the Compton Thick AGN population.

The CXB synthesis (1)

Necessary ingredients:

- X-rays Luminosity Function (XLF).
 - N_H distribution.
- Spectral templates of AGN classes.

Ueda et al 2014: hard band (2–10 keV), 4039 AGNs.

Absolute normalization:

- 10% 1σ uncertainties on best fit parameters
- 15% Ueda 2014 vs Ueda 2003

The CXB synthesis (2)

Necessary ingredients:

- X-rays Luminosity Function (XLF).
 - N_H distribution.
- Spectral templates of AGN classes.
- AGN distribution as a function of the absorption (N_H).
- Still 11% of mildly obscured AGN (23 < logN_H < 24) escape detection.
- We fit the $\rm N_{\rm H}$ distribution

The CXB synthesis (3)

Necessary ingredients:

- X-rays Luminosity Function (XLF).
 - N_H distribution.
- Spectral templates of AGN classes.

Assumption for numerical models:

- Intrinsic continuum.
- Torus geometry.

This work

- Use BAT data to constrain the spectral properties.
- Swift / BAT (14 195 keV) average spectra of Seyfert Galaxies are obtained with the stacking procedure.

Swift/BAT Payload

The sample and average spectra

165 Seyfert galaxies (> 5σ) (Ricci et al 2011).

ISGRI data: $\sim 2 \ 10^7 s$

BAT data: $\sim 5 \ 10^8 s$

The reflection component

with pexrav model:

20 < logN_H < 22 23 < logN_H < 24

Limited energy bandpass of BAT.

But it does not matter much for the CXB synthesis.

The BAT spectral templates

Necessary ingredients:

- X-rays Luminosity Function (XLF).
 - N_H distribution.
- Spectral templates of AGN classes.

Spectral templates derived by stacked BAT spectra.

 E_{c} fixed at 200 keV.

Compton thick templates derived with MYTORUS model (Yaqoob 2012).

The CXB spectrum

 N_H fit performed on ROSAT, Swift/XRT, Swift/BAT, INTEGRAL.

- Scaling factor on the absolute normalization.
 - Mildly obscured sources contribute massively to the CXB.

CXB best fit: scaling factor = 1.3 with Ueda 2014 XLF

CXB Flux from CTK sources (1)

Contour plot for various combinations of ingredients.

 F_{CTK} (30 keV) < 4 keV sr⁻¹ cm⁻² s⁻¹ (at 1 σ)

A huge CTK population is not needed.

CXB Flux from CTK sources (2)

Previous XLF and N_H distr. + BAT templates: fit not good.

A good fit can be achieved only fitting the N_H distribution to the data.

Sp. T.	XLF	N _H distr	χ^2_{red}	CT Flux
G07	H05	G07		10
Т09	U03	Т09		4
U14	U14	U14		9
BAT	H05	G07	2.0	1.5±0.5
BAT	U03	Т09	2.1	< 1
BAT	U14	U14	1.7	11.5±0.5
BAT	U03	fitted	1.1	< 2
BAT	U14	fitted	1.0	< 4

Conclusion

- We confirm the hint found by Ricci et al 2011: Mildly obscured Seyferts show more reflection than Lightly obscured.
- We reproduce the CXB spectrum using spectral templates derived from BAT stacking. CXB is dominated by AGN at z < 1.3: if the average spectra are representative up to z = 1.3, CTK fraction is less than 20%. It is compatible with the observation at low redshift.
- The large reflection found in Mildly obscured Seyferts is in contrast with the obscuring torus model, and points towards a clumpy obscuring material. This is in line with the recent modelling of the infrared spectra of AGNs (works of Ramos Almeida, Elitzur, Nankova).