Relativistic effects with cross-correlations

Enea Di Dio

in collaboration with Francesco Montanari, Ruth Durrer, Julien Lesgourgues, Matteo Viel, Vid Irsic

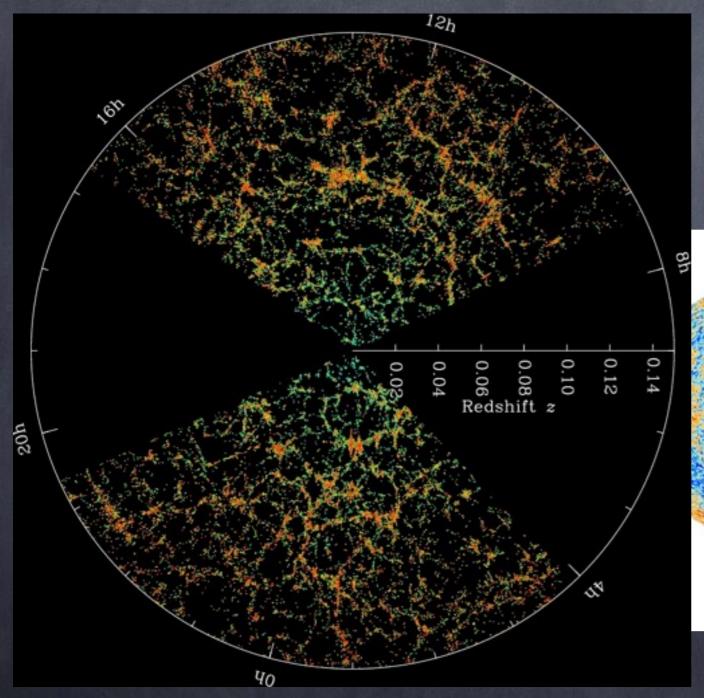
INAF

ISTITUTO NAZIONALE
DI ASTROFISICA

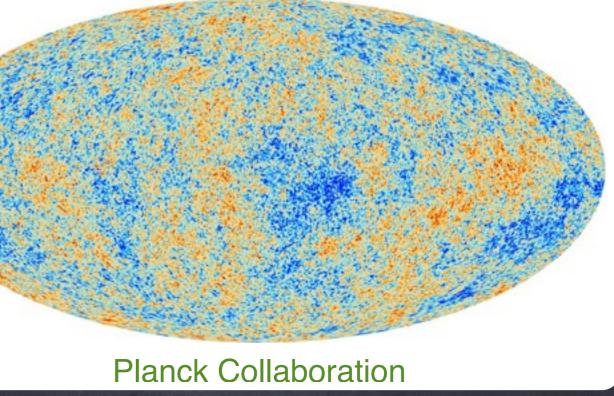
NATIONAL INSTITUTE

28th Texas Symposium on Relativistic Astrophysics

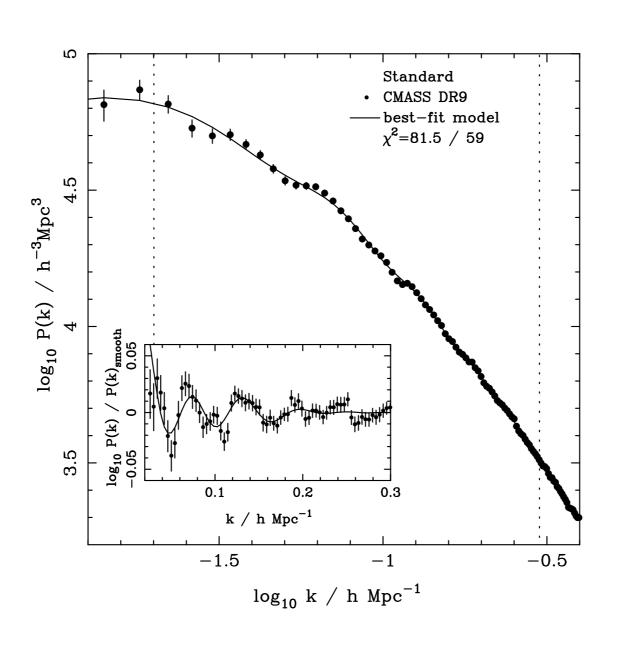
Geneva, 14 December



$$2\sum_{\ell=2}^{2500} (2\ell+1) \sim 10^7$$

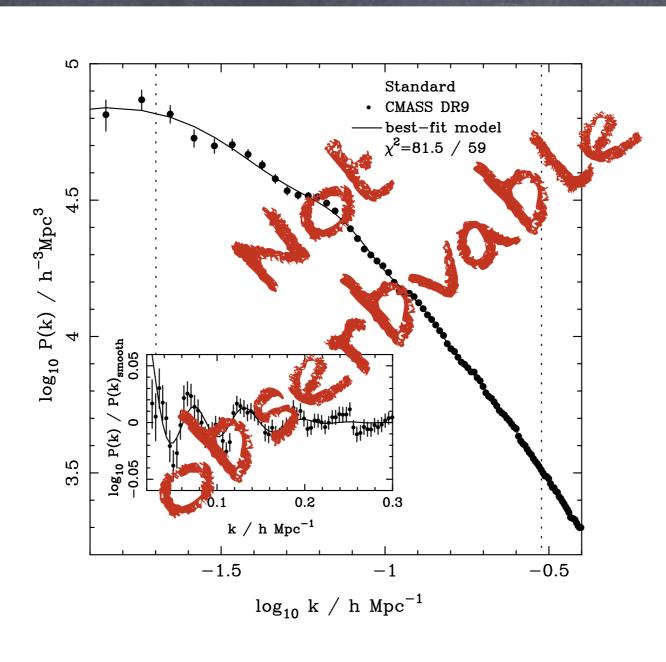


$$(3000)^3 = 2.7 \times 10^{10}$$



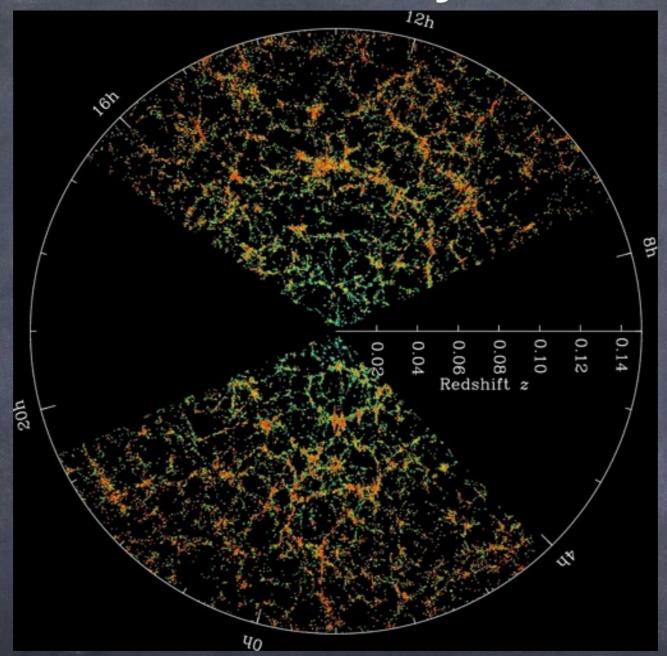
Anderson et al '12 [arXiv:1203.6594]

$$P_{\text{obs}}(k, \mu, z) = b(z)^{2} (1 + \beta(z) \mu^{2})^{2} P(k, z)$$



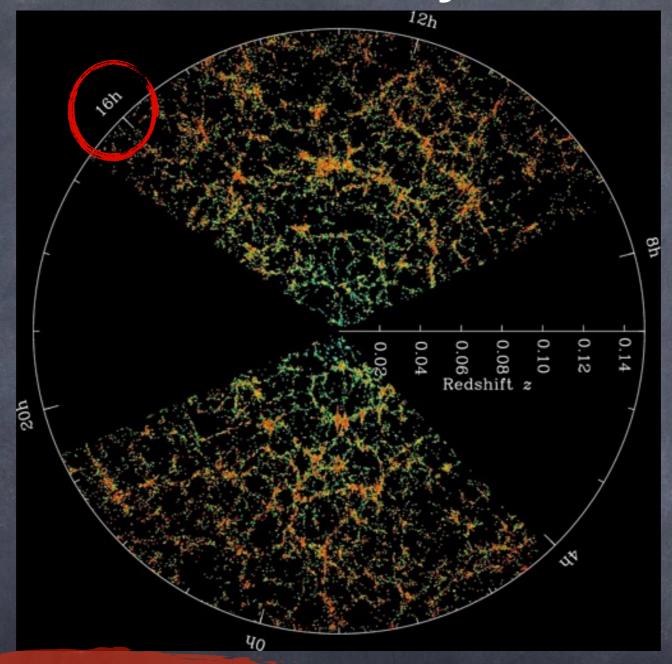
Anderson et al '12 [arXiv:1203.6594]

$$P_{\text{obs}}(k, \mu, z) = b(z)^{2} (1 + \beta(z) \mu^{2})^{2} P(k, z)$$



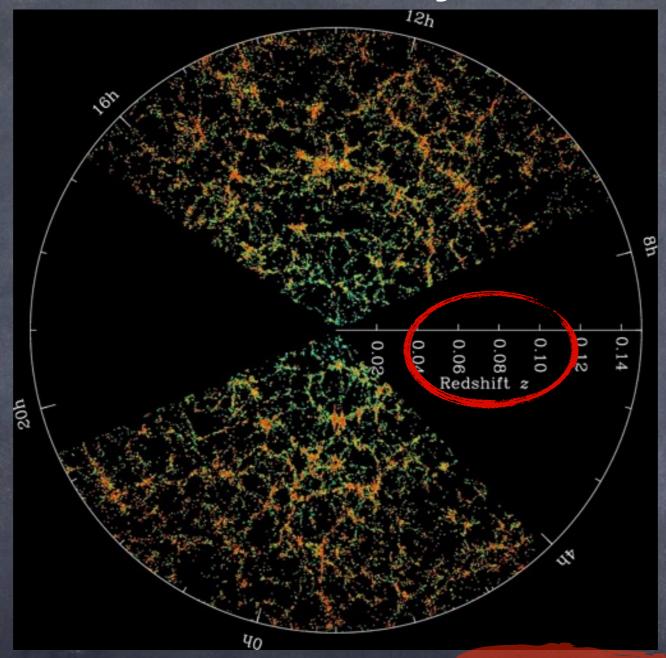
Angular position ${f n}$ Redshift z

$$N\left(\mathbf{n},z\right)d\Omega_{\mathbf{n}}dz$$



Angular position n Redshift z

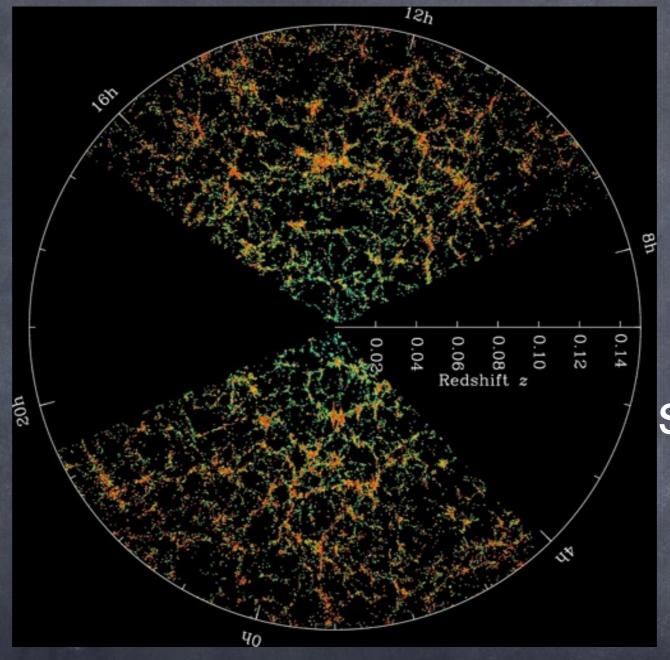
 $\overline{N}(\mathbf{n},z)\overline{d\Omega_{\mathbf{n}}}dz$



Angular position n

Redshift z

 $N\left(\mathbf{n},z\right)d\Omega_{\mathbf{n}}dz$

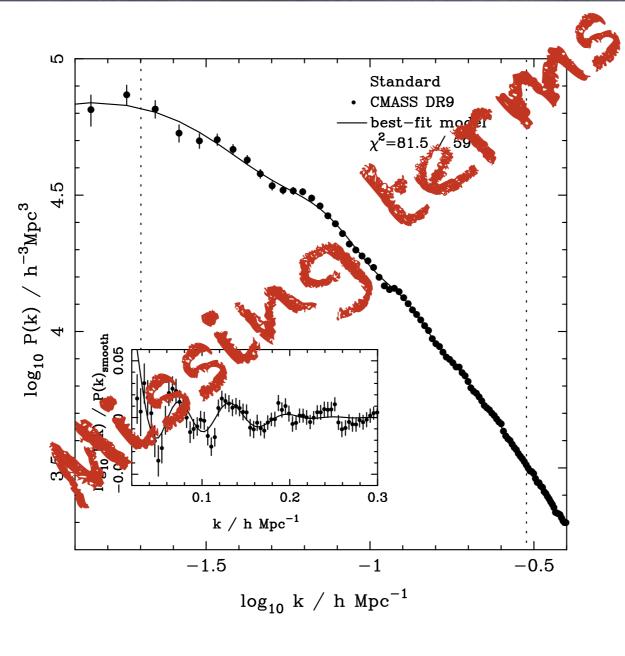


Info about mass, spectral type,

Angular position n

Redshift z

 $N\left(\mathbf{n},z\right)d\Omega_{\mathbf{n}}dz$



Anderson et al '12 [arXiv:1203.6594]

$$P_{\text{obs}}(k, \mu, z) = b(z)^{2} (1 + \beta(z) \mu^{2})^{2} P(k, z)$$

$$\Delta_N\left(\mathbf{n},z,m_*\right) = b(z)D_{cm}\left(L > \bar{L}_*\right) + \mathcal{H}^{-1}\partial_r\mathbf{n}\cdot\mathbf{v}$$
 Standard

$$-rac{2-5s}{2}\int_{0}^{r}rac{r-r'}{rr'}\Delta_{\Omega}\left(\Psi+\Phi
ight)dr'$$
 $-\left(\frac{1}{2}+\frac{2-5s}{2}+\dot{\mathcal{H}}\right)$

$$+\left(5s + \frac{2-5s}{\mathcal{H}r} + \frac{\mathcal{H}}{\mathcal{H}^2} - f_{\text{evo}}^N\right)\mathbf{n} \cdot \mathbf{v} + (f_{\text{evo}}^N - 3)\mathcal{H}v$$

Effects

Relativistic +
$$\left(5s + \frac{2-5s}{\mathcal{H}r} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} - f_{\text{evo}}^N\right) \int_0^r \left(\dot{\Psi} + \dot{\Phi}\right) dr'$$

Effects

$$+\left(5s + \frac{2-5s}{\mathcal{H}r} + \frac{\mathcal{H}}{\mathcal{H}^2} - f_{\text{evo}}^N\right)\Psi$$

$$+\frac{2-5s}{r}\int_0^r (\Psi + \Phi) dr$$

$$+ (5s - 2) \Phi + \Psi + \mathcal{H}^{-1} \dot{\Phi}$$

Bonvin & Durrer [arXiv:1105.5280],

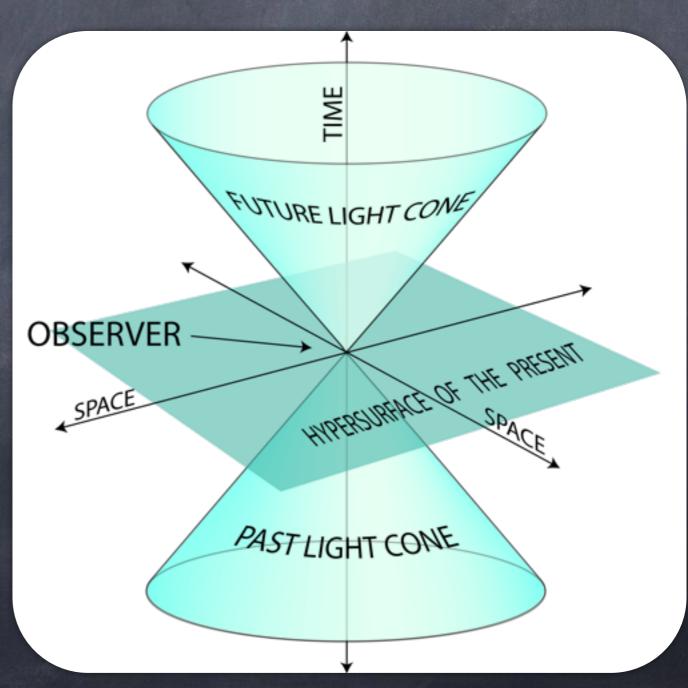
Challinor & Lewis [arXiv:1105.5292], Yoo [arXiv:1009.3021]

To compute $\Delta(\mathbf{n},z) \equiv \frac{N(\mathbf{n},z) - < N > (z)}{< N > (z)}$ we have to consider:

$$\frac{N(\mathbf{n},z) - \langle N \rangle(z)}{\langle N \rangle(z)}$$

To compute $\Delta(\mathbf{n},z) \equiv \frac{N(\mathbf{n},z) - < N > (z)}{< N > (z)}$ we have to consider:

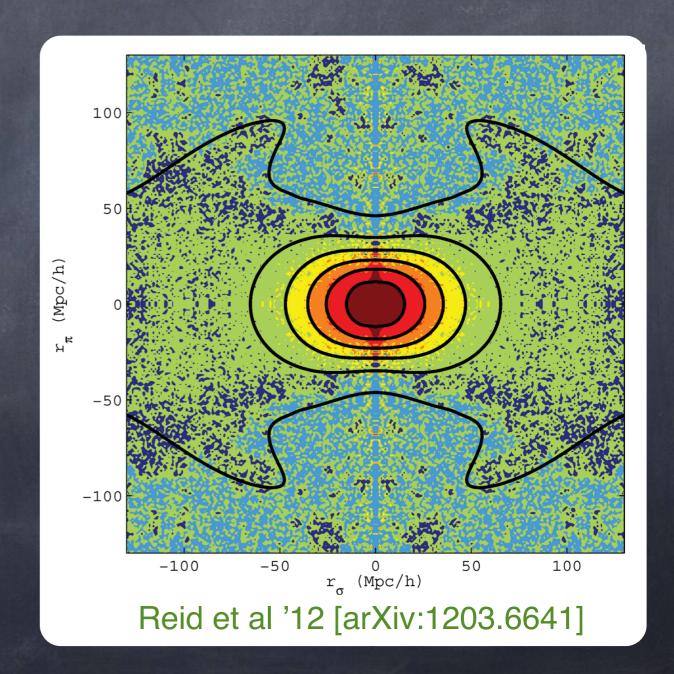
observation on the past lightcone



we have to consider:

To compute
$$\Delta(\mathbf{n},z) \equiv \frac{N(\mathbf{n},z) - < N > (z)}{< N > (z)}$$

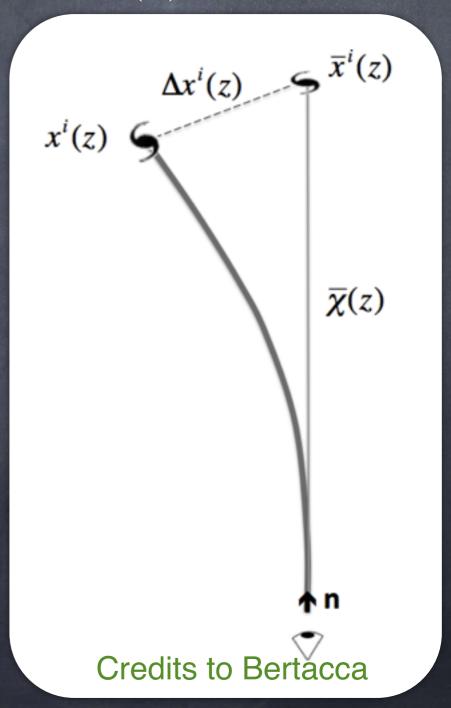
- observation on the past lightcone
- redshift perturbed peculiar velocity



we have to consider:

To compute
$$\Delta(\mathbf{n},z) \equiv \frac{N(\mathbf{n},z) - < N > (z)}{< N > (z)}$$

- observation on the past lightcone
- redshift perturbed by peculiar velocity
- light deflection



$$\Delta_{N}\left(\mathbf{n},z,m_{*}\right)=b(z)D_{cm}\left(L>\bar{L}_{*}\right)+\mathcal{H}^{-1}\partial_{r}\mathbf{n}\cdot\mathbf{v}$$

$$-\frac{2-5s}{2}\int_{0}^{r}\frac{r-r'}{rr'}\Delta_{\Omega}\left(\Psi+\Phi\right)dr'$$

$$+\left(5s+\frac{2-5s}{\mathcal{H}r}+\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}}-f_{\mathrm{evo}}^{N}\right)\mathbf{n}\cdot\mathbf{v}+\left(f_{\mathrm{evo}}^{N}-3\right)\mathcal{H}v$$

$$+\left(5s+\frac{2-5s}{\mathcal{H}r}+\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}}-f_{\mathrm{evo}}^{N}\right)\int_{0}^{r}\left(\dot{\Psi}+\dot{\Phi}\right)dr'$$

$$+\left(5s+\frac{2-5s}{\mathcal{H}r}+\frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}}-f_{\mathrm{evo}}^{N}\right)\Psi$$

$$+\frac{2-5s}{r}\int_{0}^{r}\left(\Psi+\Phi\right)dr$$
Bonvin & Durrer [arXiv:1105.5280],

 $+(5s-2)\Phi + \Psi + \mathcal{H}^{-1}\dot{\Phi}$

Bonvin & Durrer [arXiv:1105.5280], Challinor & Lewis [arXiv:1105.5292], Yoo [arXiv:1009.3021]

$$\begin{split} \Delta_{N}\left(\mathbf{n},z,m_{*}\right) &= b(z)D_{cm}\left(L > \bar{L}_{*}\right) + \mathcal{H}^{-1}\partial_{r}\mathbf{n} \cdot \mathbf{v} \\ &- \frac{2-5s}{2}\int_{0}^{r}\frac{r-r'}{rr'}\Delta_{\Omega}\left(\Psi + \Phi\right)dr' \\ &+ \left(5s + \frac{2-5s}{\mathcal{H}r} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - f_{\mathrm{evo}}^{N}\right)\mathbf{n} \cdot \mathbf{v} + \left(f_{\mathrm{evo}}^{N} - 3\right)\mathcal{H}v \\ &+ \left(5s + \frac{2-5s}{\mathcal{H}r} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - f_{\mathrm{evo}}^{N}\right)\int_{0}^{r}\left(\dot{\Psi} + \dot{\Phi}\right)dr' \\ &+ \left(5s + \frac{2-5s}{\mathcal{H}r} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - f_{\mathrm{evo}}^{N}\right)\Psi \\ &+ \frac{2-5s}{r}\int_{0}^{r}\left(\Psi + \Phi\right)dr \end{split}$$
Bonvin & Durrer [arXiv:1105.5280],

 $+ (5s - 2) \Phi + \Psi + \mathcal{H}^{-1} \dot{\Phi}$

Challinor & Lewis [arXiv:1105.5292],

Yoo [arXiv:1009.3021]

$$\Delta_{N}(\mathbf{n}, z, m_{*}) = b(z)D_{cm}\left(L > \bar{L}_{*}\right) + \mathcal{H}^{-1}\partial_{r}\mathbf{n} \cdot \mathbf{v}$$

$$-\frac{2 - 5s}{2} \int_{0}^{r} \frac{r - r'}{rr'} \Delta_{\Omega}\left(\Psi + \Phi\right) dr'$$

$$+ \left(5s + \frac{2 - 5s}{\mathcal{H}r} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - f_{\text{evo}}^{N}\right) \mathbf{n} \cdot \mathbf{v} + \left(f_{\text{evo}}^{N} - 3\right)\mathcal{H}v$$

$$+ \left(5s + \frac{2 - 5s}{\mathcal{H}r} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - f_{\text{evo}}^{N}\right) \int_{0}^{r} \left(\dot{\Psi} + \dot{\Phi}\right) dr'$$

$$+ \left(5s + \frac{2 - 5s}{\mathcal{H}r} + \frac{\dot{\mathcal{H}}}{\mathcal{H}^{2}} - f_{\text{evo}}^{N}\right) \Psi$$

$$\sim \left(\frac{\mathcal{H}}{k}\right)^2 D$$

 $+\frac{2-5s}{r}\int_{0}^{r}\left(\Psi+\Phi\right)dr$

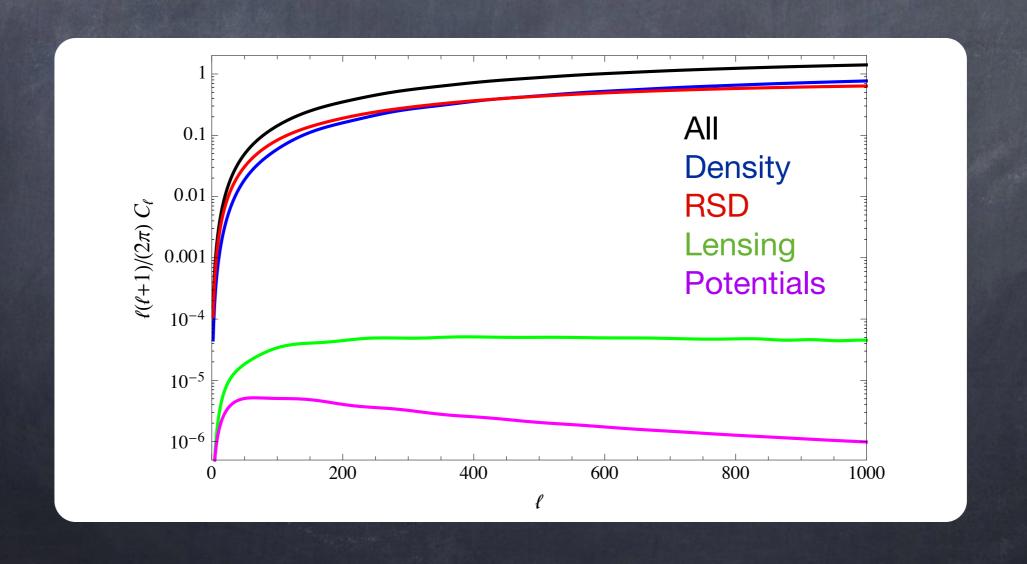
 $+(5s-2)\Phi + \Psi + \mathcal{H}^{-1}\dot{\Phi}$

Bonvin & Durrer [arXiv:1105.5280], Challinor & Lewis [arXiv:1105.5292], Yoo [arXiv:1009.3021]

z-dependent angular power spectrum

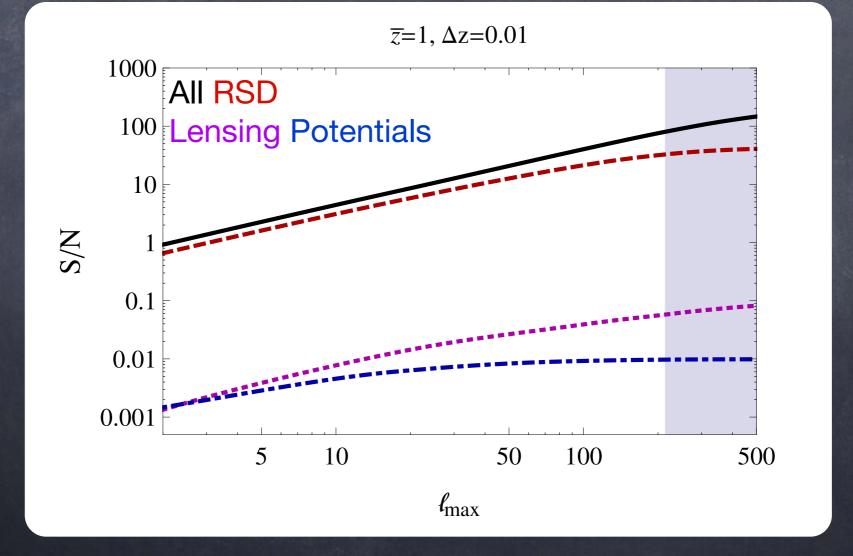
Power spectrum

$$c_{\ell}(z_1, z_2) = \langle a_{lm}(z_1) a_{lm}(z_2) \rangle = 4\pi \int \frac{dk}{k} \mathcal{P}(k) \Delta_{\ell}(z_1, k) \Delta_{\ell}(z_2, k)$$



Cumulative Signal to Noise

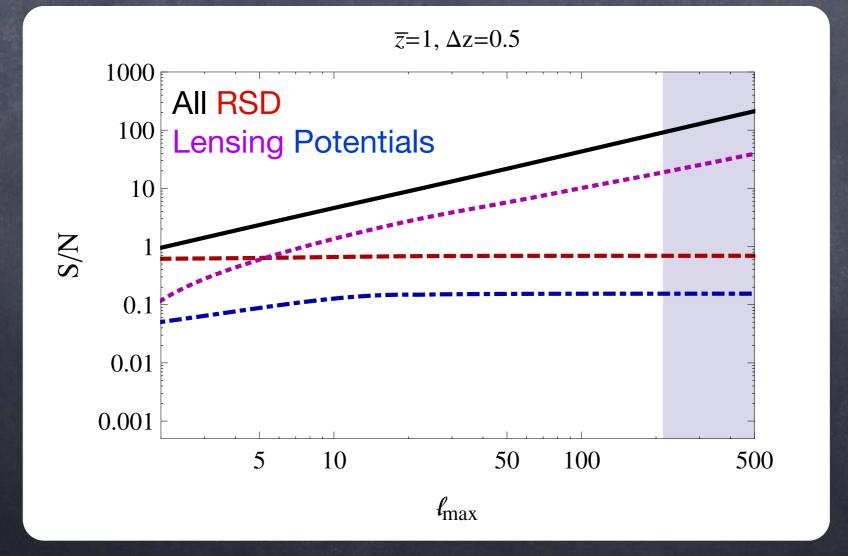
$$\left(\frac{S}{N}\right)^2 = \sum_{\ell=2}^{\ell_{\text{max}}} \left(\frac{C_{\ell} - \tilde{C}_{\ell}}{\sigma_{\ell}}\right)^2$$



Euclid

Cumulative Signal to Noise

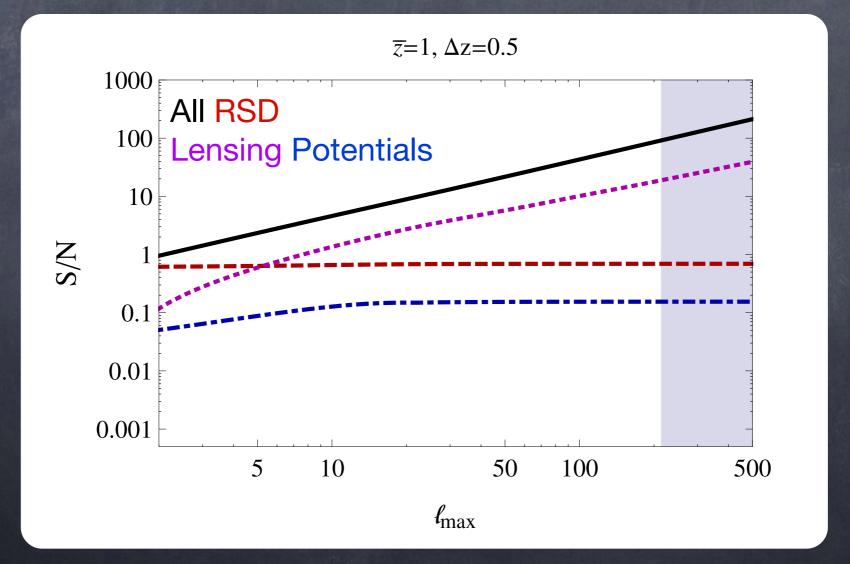
$$\left(\frac{S}{N}\right)^2 = \sum_{\ell=2}^{\ell_{\text{max}}} \left(\frac{C_{\ell} - \tilde{C}_{\ell}}{\sigma_{\ell}}\right)^2$$



Euclid

Cumulative Signal to Noise

$$\left(\frac{S}{N}\right)^2 = \sum_{\ell=2}^{\ell_{\max}} \left(\frac{C_{\ell} - \tilde{C}_{\ell}}{\sigma_{\ell}}\right)^2$$

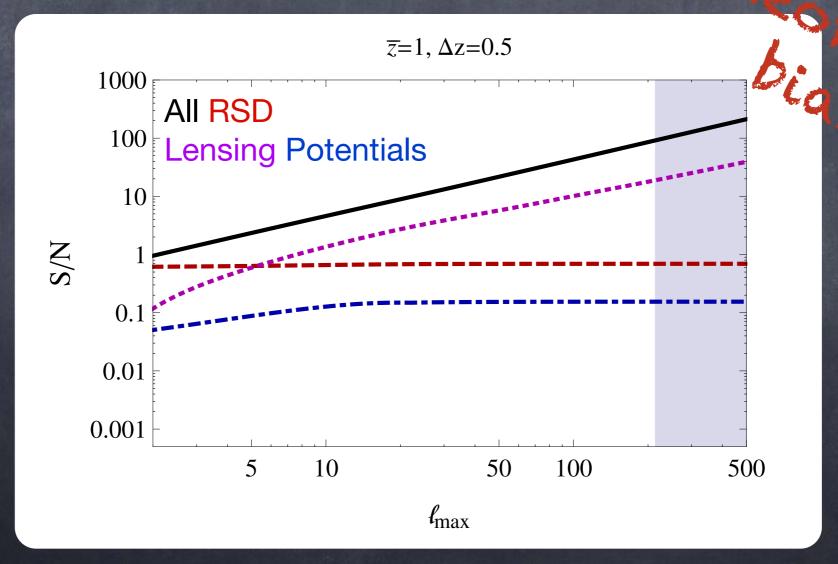


See Montanari's Talk

Euclid

Cumulative Signal to Noise

$$\left(rac{S}{N}
ight)^2 = \sum_{\ell=2}^{\ell_{
m max}} \left(rac{C_\ell - ilde{C}_\ell}{\sigma_\ell}
ight)^2$$



Euclid

See Montanari's Talk

ED, Montanari, Durrer, Lesgourgues [arXiv:1308.6186]

Are relativistic effects relevant for the standard analysis?

- No, but.. (Yoo and Seljak [ArXiv:1308.1093], Yoo et al [arXiv:1206.5809],
 Alonso et al [1505.07596])
- cosmic magnification for deep survey
 - (see also Raccanelli et al [ArXiv:1311.6813], Alonso et al [1505.07596] Montanari and Durrer [ArXiv:1506.01369])

Are relativistic effects relevant for the standard analysis?

- No, but.. (Yoo and Seljak [ArXiv:1308.1093], Yoo et al [arXiv:1206.5809],
 Alonso et al [1505.07596])
- cosmic magnification for deep survey

If not relevant in standard analysis, can we think to an alternative analysis to measure them?

- imaginary power spectrum (McDonald [Arxiv:0907.5220])
- dipole and octupole in galaxy correlation functions (Raccanelli et al [ArXiv:1306.6646], Bonvin et al [Arxiv:1309.1321])
- multitracer and shot-noise canceling techniques (Yoo et al [arXiv:1206.5809])

Are relativistic effects relevant for the standard analysis?

- No, but.. (You and Selfak [ArXiv:1308.1093], You et al [arXiv:1206.5809].
- cosmic magnification for deep survey

If not relevant in standard analysis, alternative analysis to measure them?

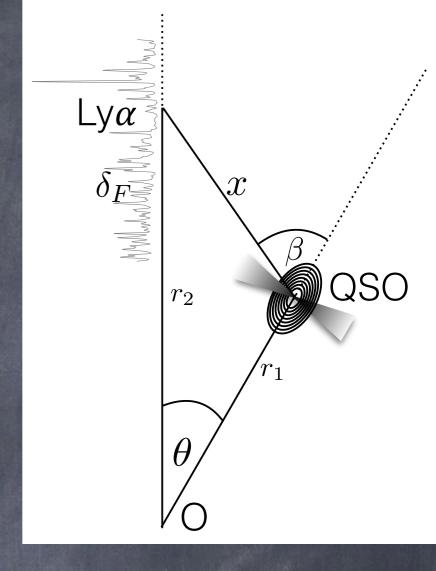
**The content of the content of th If not relevant in standard analysis, can we think to an

- dipole and octupole in galaxy correlation functions (Raccanelli et al [ArXiv:1306.6646], Bonvin et al [Arxiv:1309.1321]
- multitracer and shot-noise canceling techniques (Yoo et al [arXiv:1206.5809])

Irsic, ED, Viel [arXiv:1510.03436]

$$\xi_{Q\alpha}(z_1, z_2, \theta) = \langle \Delta_Q(\mathbf{n}_1, z_1) \delta_F(\mathbf{n}_2, z_2) \rangle$$

Large bias factor difference

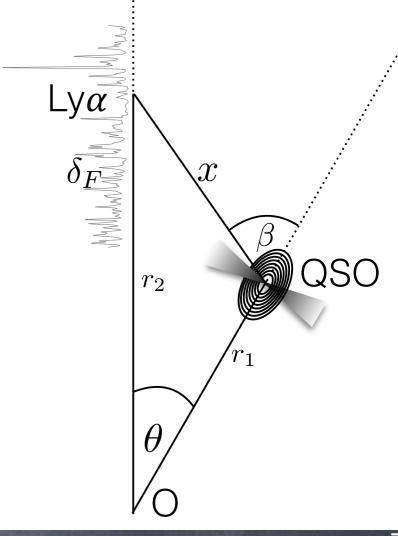


Irsic, ED, Viel [arXiv:1510.03436]

$$\xi_{Q\alpha}(z_1, z_2, \theta) = \langle \Delta_Q(\mathbf{n}_1, z_1) \delta_F(\mathbf{n}_2, z_2) \rangle$$

Large bias factor difference

$$\delta_F(\mathbf{n}, z) = b_{\alpha} \delta^{\text{sync}} + b_v \mathcal{H}^{-1} \partial_r \mathbf{n} \cdot \mathbf{v} - \bar{\tau}(z) \left[-\left(2 + \frac{\dot{\mathcal{H}}}{\mathcal{H}^2}\right) \frac{\delta z}{1 + z} + \mathbf{n} \cdot \mathbf{v} + \Psi + \mathcal{H}^{-1} \dot{\Phi} - 3\mathcal{H}v \right]$$

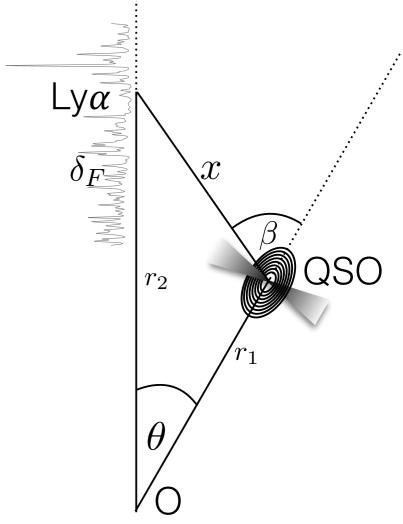


Irsic, ED, Viel [arXiv:1510.03436]

$$\xi_{Q\alpha}(z_1, z_2, \theta) = \langle \Delta_Q(\mathbf{n}_1, z_1) \delta_F(\mathbf{n}_2, z_2) \rangle$$

Large bias factor difference

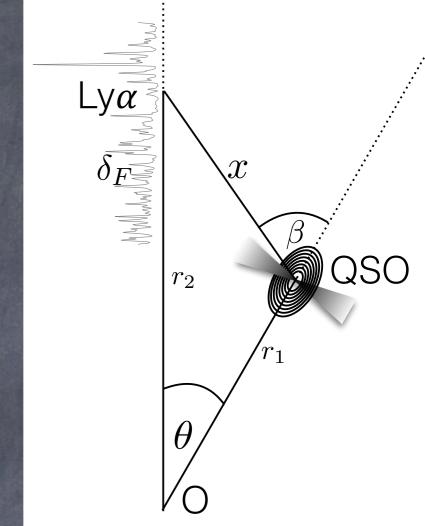
$$\delta_F\left(\mathbf{n},z\right) = b_{\alpha}\delta^{\mathrm{sync}} + b_{v}\mathcal{H}^{-1}\partial_r\mathbf{n}\cdot\mathbf{v} - \bar{\tau}\left(z\right)\left[-\left(2+\frac{\dot{\mathcal{H}}}{\mathcal{H}^2}\right)\frac{\delta z}{1+z} + \mathbf{n}\cdot\mathbf{v} + \Psi + \mathcal{H}^{-1}\dot{\Phi} - 3\mathcal{H}v\right]$$
Standard



Irsic, ED, Viel [arXiv:1510.03436]

$$\xi_{Q\alpha}(z_1, z_2, \theta) = \langle \Delta_Q(\mathbf{n}_1, z_1) \delta_F(\mathbf{n}_2, z_2) \rangle$$

Large bias factor difference



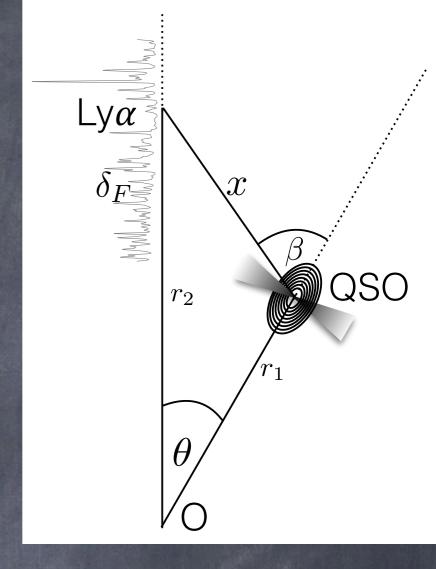
$$\delta_F(\mathbf{n}, z) = b_{\alpha} \delta^{\text{sync}} + b_v \mathcal{H}^{-1} \partial_r \mathbf{n} \cdot \mathbf{v} - \bar{\tau}(z) \left[-\left(2 + \frac{\dot{\mathcal{H}}}{\mathcal{H}^2}\right) \frac{\delta z}{1 + z} + \mathbf{n} \cdot \mathbf{v} + \Psi + \mathcal{H}^{-1} \dot{\Phi} - 3\mathcal{H}v \right]$$

Relativistic

Irsic, ED, Viel [arXiv:1510.03436]

$$\xi_{Q\alpha}(z_1, z_2, \theta) = \langle \Delta_Q(\mathbf{n}_1, z_1) \delta_F(\mathbf{n}_2, z_2) \rangle$$

$$\xi_{Q\alpha} = \xi_{Q\alpha}^{\text{newt}} + \xi_{Q\alpha}^{\text{magnification}} + \xi_{Q\alpha}^{\text{relativistic}}$$



Irsic, ED, Viel [arXiv:1510.03436]

$$\xi_{Q\alpha}(z_1, z_2, \theta) = \langle \Delta_Q(\mathbf{n}_1, z_1) \delta_F(\mathbf{n}_2, z_2) \rangle$$

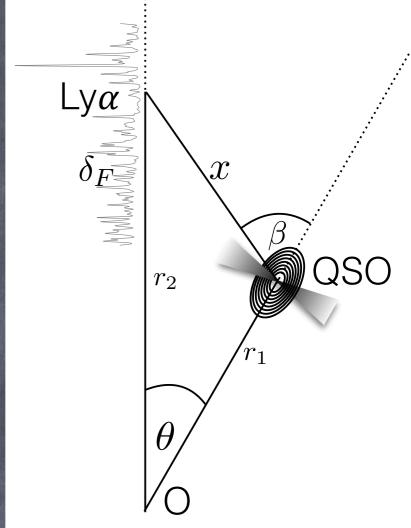
$$\xi_{Q\alpha} = \xi_{Q\alpha}^{\text{newt}} + \xi_{Q\alpha}^{\text{magnification}} + \xi_{Q\alpha}^{\text{relativistic}}$$

$$\xi_{Q\alpha}^{\text{newt}} \sim b_{Q}b_{\alpha} \int \frac{dk}{2\pi^{2}} k^{2}P(k) j_{0}(kx)$$

$$+ b_{v} \int \frac{dk}{2\pi^{2}} k^{2}f^{2}P(k) \left[\frac{1}{5}j_{0}(kx) - \frac{4}{7}j_{2}(kx) + \frac{8}{35}j_{4}(kx) \right]$$

$$+ (b_{Q}b_{v} + b_{\alpha}) \int \frac{dk}{2\pi^{2}} k^{2}fP(k) \left[\frac{1}{3}j_{0}(kx) - \frac{2}{3}j_{2}(kx) \right]$$

Order $\mathcal{O}(1)$ Even spherical Bessel functions



Irsic, ED, Viel [arXiv:1510.03436]

$$\xi_{Q\alpha}(z_1, z_2, \theta) = \langle \Delta_Q(\mathbf{n}_1, z_1) \delta_F(\mathbf{n}_2, z_2) \rangle$$

$$\xi_{Q\alpha} = \xi_{Q\alpha}^{\text{newt}} + \xi_{Q\alpha}^{\text{magnification}} + \xi_{Q\alpha}^{\text{relativistic}}$$

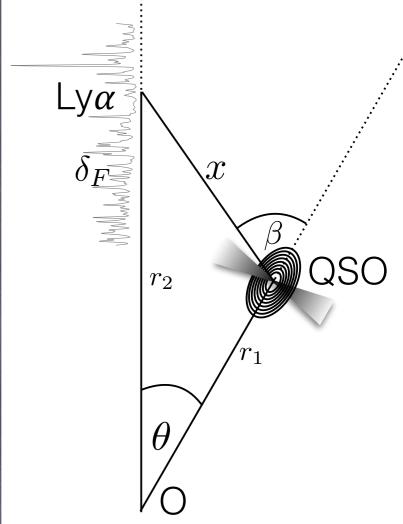
$$\xi_{Q\alpha}^{\text{Doppler}} \sim \left(-b_{Q}\mathcal{R}_{\alpha} + \mathcal{R}_{Q}b_{\alpha}\right) \int \frac{dk}{2\pi^{2}}k^{2}fP\left(k\right)j_{1}\left(kx\right)\frac{\mathcal{H}}{k}$$

$$+ \left(-\mathcal{R}_{\alpha} + \mathcal{R}_{Q}b_{v}\right) \int \frac{dk}{2\pi^{2}}k^{2}f^{2}P\left(k\right) \left[\frac{3}{5}j_{1}\left(kx\right) - \frac{2}{5}j_{3}\left(kx\right)\right]\frac{\mathcal{H}}{k}$$

$$+ \mathcal{R}_{\alpha}\mathcal{R}_{Q} \int \frac{dk}{2\pi^{2}}k^{2}f^{2}P\left(k\right) \left[\frac{1}{3}j_{0}\left(kx\right) - \frac{2}{3}j_{2}\left(kx\right)\right] \left(\frac{\mathcal{H}}{k}\right)^{2}$$

Order $\mathcal{O}\left(\mathcal{H}/k\right)$

Odd spherical Bessel functions



Irsic, ED, Viel [arXiv:1510.03436]

$$\xi_{Q\alpha}(z_1, z_2, \theta) = \langle \Delta_Q(\mathbf{n}_1, z_1) \delta_F(\mathbf{n}_2, z_2) \rangle$$

$$\xi_{Q\alpha} = \xi_{Q\alpha}^{\text{newt}} + \xi_{Q\alpha}^{\text{magnification}} + \xi_{Q\alpha}^{\text{relativistic}}$$

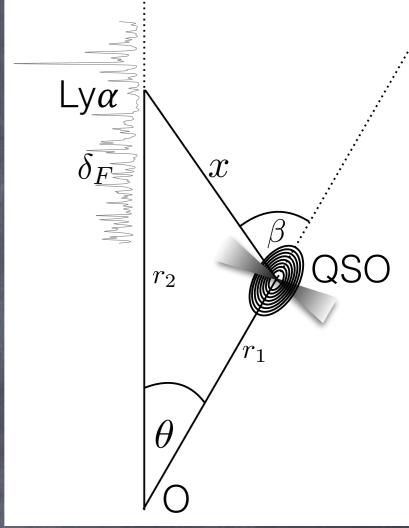
$$\xi_{Q\alpha}^{\text{Doppler}} \sim \left(-b_{Q}\mathcal{R}_{\alpha} + \mathcal{R}_{Q}b_{\alpha}\right) \int \frac{dk}{2\pi^{2}}k^{2}fP\left(k\right)j_{1}\left(kx\right)\frac{\mathcal{H}}{k}$$

$$+ \left(-\mathcal{R}_{\alpha} + \mathcal{R}_{Q}b_{v}\right) \int \frac{dk}{2\pi^{2}}k^{2}f^{2}P\left(k\right) \left[\frac{3}{5}j_{1}\left(kx\right) - \frac{2}{5}j_{3}\left(kx\right)\right]\frac{\mathcal{H}}{k}$$

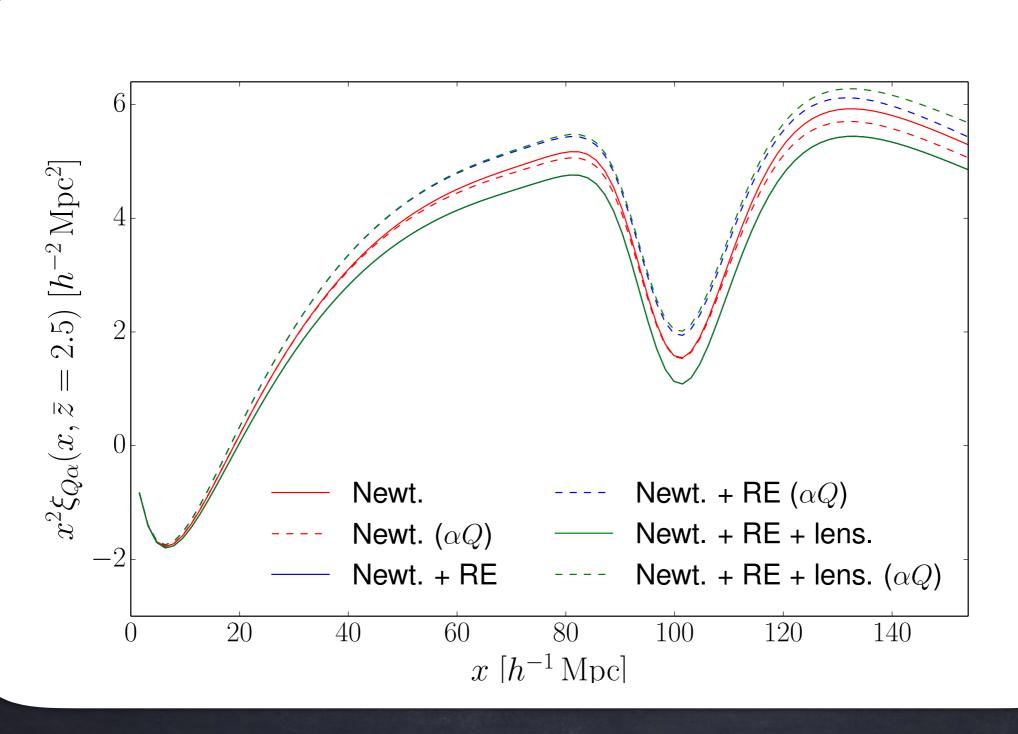
$$+ \mathcal{R}_{\alpha}\mathcal{R}_{Q} \int \frac{dk}{2\pi^{2}}k^{2}f^{2}P\left(k\right) \left[\frac{1}{3}j_{0}\left(kx\right) - \frac{2}{3}j_{2}\left(kx\right)\right] \left(\frac{\mathcal{H}}{k}\right)^{2}$$

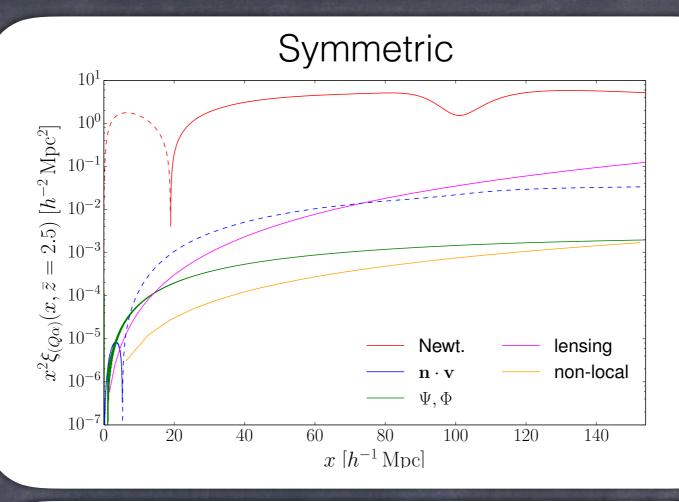
Order $\mathcal{O}(\mathcal{H}/k)$ $\mathcal{O}(\mathcal{H}^2/k^2)$

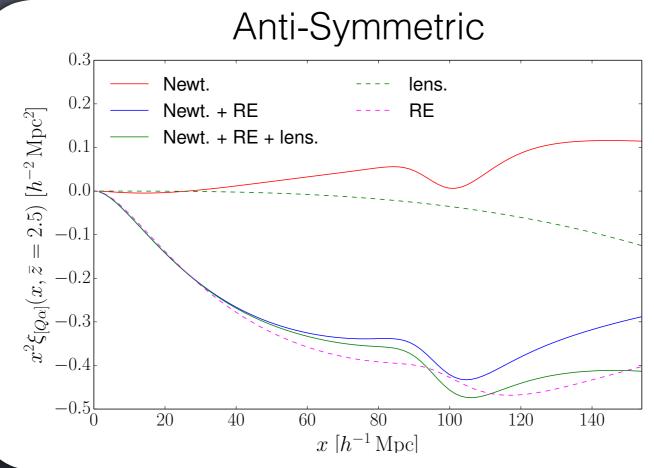
Odd spherical Bessel functions



Relativistic effects on Lyman- α forest

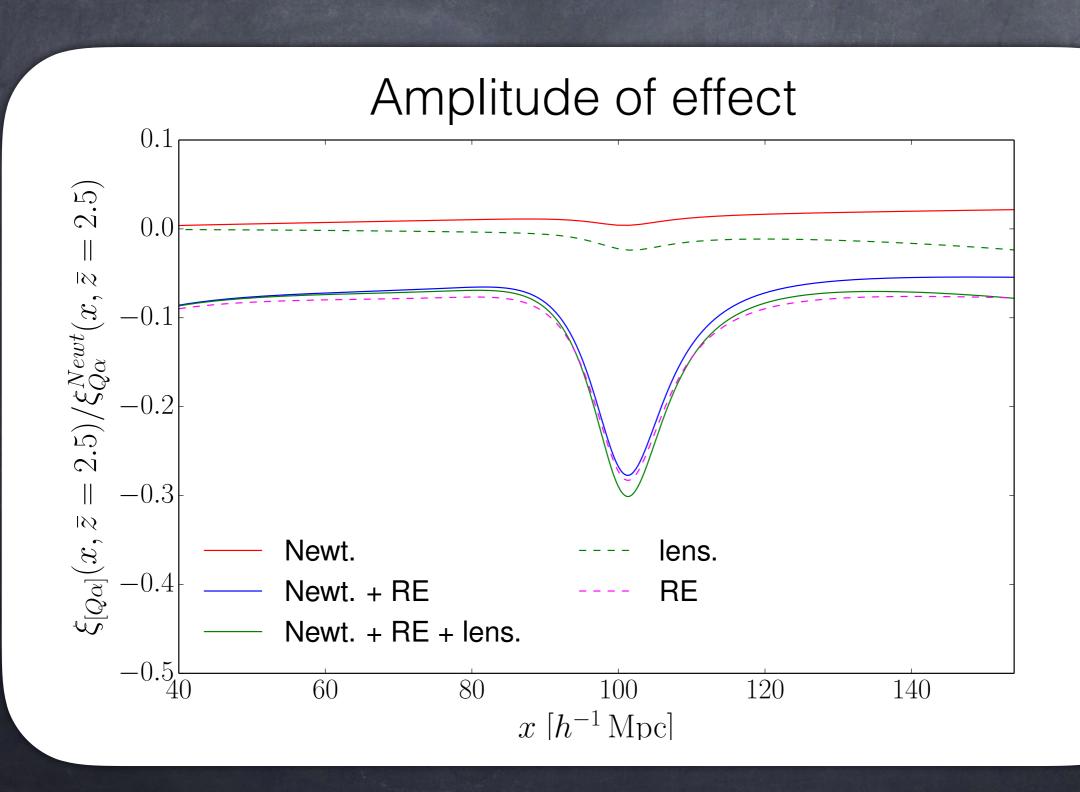






Irsic, ED, Viel [arXiv:1510.03436]

Relativistic effects on Lyman- α forest



Single tracer vs multi-tracers

	single	multi
Leading order correction	$\mathcal{O}\left(\mathcal{H}^2/k^2\right)$	$\mathcal{O}\left(\mathcal{H}/k ight)$
Parity	even	odd
Relevant scales	super-Hubble	all
Limited by	cosmic variance	shot noise
Forecasted detection	No	Yes