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14 L. Anderson et al.

Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate

p

C
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for the power spectrum and the rms error calculated
from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).

an estimate of the “redshift-space” power, binned into bins in k of
width 0.04hMpc

�1.

6.2 Fitting the power spectrum

We fit the observed redshift-space power spectrum, calculated as
described in Section 6, with a two component model comprising a
smooth cubic spline multiplied by a model for the BAO, following
the procedure developed by Percival et al. (2007a,c, 2010). The
model power spectrum is given by

P (k)m = P (k)smooth ⇥B
m

(k/↵), (32)

where P (k)smooth is a smooth model that fits the overall shape
of the power spectrum, and the BAO model Bm(k), calculated for
our fiducial cosmology, is scaled by the dilation parameter ↵ as
defined in Eq. 21. The calculation of the BAO model is described
in detail below. This scaling of the acoustic signal is identical to
that used in the correlation function fits, although the differing non-
linear prescriptions in (Eqns 23 & 32) means that the non-linear
BAO damping is treated in a subtly different way.

Each power spectrum model to be fitted is convolved with the
survey window function, giving our final model power spectrum to
be compared with the data. The window function for this convolu-
tion is the normalised power in a Fourier transform of the weighted
survey coverage, as defined by the random catalogue, and is calcu-
lated using the same Fourier procedure described in Section 6 (e.g.
Percival et al. 2007c). This is then fitted to express the window
function as a matrix relating the model power spectrum evaluated
at 1000 wavenumbers, k

n

, equally spaced in 0 < k < 2hMpc

�1,
to the central wavenumbers of the observed bandpowers k
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:
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, 0). (33)

The final term W (k
i

, 0) arises because we estimate the average
galaxy density from the sample, and is related to the integral con-
straint in the correlation function. In fact this term is smooth (as

the power of the window function is smooth), and so can be ab-
sorbed into the smooth component of the fit, and we therefore do
not explicitly include this term in our fits.

To model the overall shape of the galaxy clustering power
spectrum we use a cubic spline (Press et al. 1992), with nine nodes
fixed empirically at k = 0.001, and 0.02 < k < 0.4 with
�k = 0.05, matching that adopted in Percival et al. (2007c, 2010).
This model was tested in these papers, but we show in Section B3
that it also provides an excellent fit to the overall shape of the DR9
CMASS mock catalogues, and that there is no evidence for devia-
tions for the fits to the data.

To calculate our fiducial BAO model, we start with a linear
matter power spectrum P (k)lin, calculated using CAMB (Lewis et
al. 2000), which numerically solves the Boltzman equation describ-
ing the physical processes in the Universe before the baryon-drag
epoch. We then evolve using the HALOFIT prescription (Smith
et al. 2003), giving an approximation to the evolved power spec-
trum at the effective redshift of the survey. To extract the BAO, this
power spectrum is fitted with a model as given by Eq. 32, where we
adopt a fixed BAO model (BEH) calculated using the Eisenstein &
Hu (1998) fitting formulae at the same fiducial cosmology. Divid-
ing P (k)lin by the best-fit smooth power spectrum component from
this fit produces our BAO model, which we denote BCAMB.

We damp the acoustic oscillations to allow for non-linear ef-
fects

B
m

= (BCAMB � 1)e�k

2⌃2
nl/2

+ 1, (34)

where the damping scale ⌃

nl

is a fitted parameter. We assume
a Gaussian prior on ⌃

nl

with width ±2h�1
Mpc, centred on

8.24h�1
Mpc for pre-reconstruction fits and 4.47h�1

Mpc for
post-reconstruction fits, matching the average recovered values
from fits to the 600 mock catalogs with no prior. The exact width of
the prior is not important, but if we do not include such a prior, then
the fit can become unstable with respect to local minima at extreme
values.
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate
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from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).
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Figure 8. The CMASS DR9 power spectra before (left) and after (right) reconstruction with the best-fit models overplotted. The vertical dotted lines show
the range of scales fitted (0.02 < k < 0.3hMpc�1), and the inset shows the BAO within this k-range, determined by dividing both model and data by the
best-fit model calculated (including window function convolution) with no BAO. Error bars indicate
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from fitting BAO to the 600 mocks in the inset (see Section 4.2 for details).
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Anisotropic clustering in CMASS galaxies 2723

Figure 3. Left-hand panel: two-dimensional correlation function of CMASS galaxies (colour) compared with the best-fitting model described in Section 6.1
(black lines). Contours of equal ξ are shown at [0.6, 0.2, 0.1, 0.05, 0.02, 0]. Right-hand panel: smaller-scale two-dimensional clustering. We show model
contours at [0.14, 0.05, 0.01, 0]. The value of ξ0 at the minimum separation bin in our analysis is shown as the innermost contour. The µ ≈ 1 ‘finger-of-God’
effects are small on the scales we use in this analysis.

or equivalently (Hamilton 1992),

ξ (s, µs) ≡
∞∑

ℓ=0

ξℓ(s)Lℓ(µs). (6)

Here Lℓ is the Legendre polynomial of order ℓ. By symmetry all
odd-ℓ moments vanish and on large scales the measurements be-
come increasingly noisy to larger ℓ. The correlation functions ξ̂0(s)
and ξ̂2(s) are estimated from ξ̂LS(si , µj ) using a Riemann sum to ap-
proximate equation (5). We include all galaxy pairs between 25 and
160 h−1 Mpc in our analysis. We also caution the reader that we have
adopted logarithmically spaced bins, while our companion papers
(Anderson et al. 2012; Ross et al. 2012; Sanchez et al. 2012) analyse
clustering in linearly spaced bins of differing bin sizes. Our mea-
surements of ξ 0 and ξ 2, along with diagonal errors estimated from
PTHalos mock catalogues (Manera et al. 2012; see Section 3.2), are
shown in Fig. 4. The effective redshift of weighted pairs of galaxies
in our sample is z = 0.57, with negligible scale dependence for
the range of interest in this paper. For the purposes of constraining
cosmological models, we will interpret our measurements as being
at z = 0.57.

3.2 Covariance matrices

The matrix describing the expected covariance of our measurements
of ξℓ(s) in bins of redshift space separation depends in linear theory
only on the underlying linear matter power spectrum, the bias of the
galaxies, the shot-noise (often assumed Poisson) and the geometry
of the survey. We use 600 PTHalos mock galaxy catalogues to
estimate the covariance matrix of our measurements. These mocks
are based on combining LPT with the halo model, and are described
in more detail in Manera et al. (2012). We compute ξℓ(si) for each
mock in exactly the same way as from the data (Section 3.1) and

estimate the covariance matrix as

C
ℓ1ℓ2
ij = 1

599

600∑

k=1

(
ξ k
ℓ1

(si) − ξ̄ℓ1 (si)
) (

ξ k
ℓ2

(sj ) − ξ̄ℓ2 (sj )
)
, (7)

where ξ k
ℓ (si) is the monopole (ℓ = 0) or quadrupole (ℓ = 2) correla-

tion function for pairs in the ith separation bin in the kth mock. ξ̄ℓ(s)
is the mean value over all 600 mocks. The shape and amplitude of
the average two-dimensional correlation function computed from
the mocks are a good match to the measured correlation function
of the CMASS galaxies [see Manera et al. (2012) and Ross et al.
(2012) for more detailed comparisons]. The square roots of the di-
agonal elements of our covariance matrix are shown as the error
bars accompanying our measurements in Fig. 4. We will examine
the off-diagonal terms in the covariance matrix via the correlation
matrix, or ‘reduced covariance matrix’, defined as

C
ℓ1ℓ2,red
ij = C

ℓ1ℓ2
ij /

√
C

ℓ1ℓ1
ii C

ℓ2ℓ2
jj , (8)

where the division sign denotes a term-by-term division.
In Fig. 5 we compare selected slices of our mock covariance ma-

trix (points) to a simplified prediction from linear theory (solid lines)
that assumes a constant number density n̄ = 3 × 10−4 (h−1 Mpc)−3

and neglects the effects of survey geometry (see e.g. Tegmark 1997).
Xu et al. (2012) performed a detailed comparison of linear theory
predictions with measurements from the Las Damas SDSS-II LRG
mock catalogues (McBride et al., in preparation), and showed that
a modified version of the linear theory covariance with a few extra
parameters provides a good description of the N-body based covari-
ances for ξ 0(s). The same seems to be true here as well. The mock
catalogues show a deviation from the naive linear theory prediction
for ξ 2(s) on small scales; a direct consequence is that our errors
on quantities dependent on the quadrupole are larger than a simple
Fisher analysis would indicate. We verify that the same qualita-
tive behaviour is seen for the diagonal elements of the quadrupole
covariance matrix in our smaller set of N-body simulations used

C⃝ 2012 The Authors, MNRAS 426, 2719–2737
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

Reid et al ’12 [arXiv:1203.6641]
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What do we really observe?

observation on the past 
lightcone
redshift perturbed by 
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Are relativistic effects relevant for the standard analysis?
- No, but.. (Yoo and Seljak [ArXiv:1308.1093], Yoo et al [arXiv:1206.5809], 
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- multitracer and shot-noise canceling techniques  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Relativistic effects on Lyman-𝛼 forest
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Relativistic effects on Lyman-𝛼 forest

Irsic , ED, Viel [arXiv:1510.03436]
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Single tracer vs multi-tracers

Leading order 
correction 

single multi

Parity

O
�
H2/k2

�
O (H/k)
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Relevant scales super-Hubble all

Limited by cosmic variance shot noise

Forecasted 
detection No Yes


