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Abstract

The pre-homogenized very early universe generically experiences Mixmaster-like behavior as it
approaches the Big Bang, featuring a sequence of anisotropically and nonadiabatically expanding
Kasner epochs, for which the geometrical optics approximation substantially breaks down. To gain
a better understanding of the transport of relativistic energy in such environments, we solve for the
propagation of (test particle) electromagnetic fields through background spacetimes with various
sets of Kasner expansion indices. In solving the Einstein-Maxwell equations, we obtain fourth-order
differential equations independently for each of the electric and magnetic fields, which can be solved
to yield interesting information about how they are parametrically driven by the asymmetrically
expanding early universe.

1 Introduction

An often unspoken cosmological truism, is that before the universe was homogeneous and isotropic,
it was inhomogeneous and anisotropic. The focus of many cosmological studies is simply to get rid
of this pre-Homogenized epoch as soon as possible, by erasing it using some form of inflation, thus
eliminating the relevance of the very earliest cosmic epochs from practically all later developments.

But whether the “initial” distribution of matter and energy is simply a source of philosophical
(e.g., aesthetic or fine-tuning) consternation, of if in fact the detailed conditions of the very earliest
epochs really can be communicated through to more observable epochs, it remains in either case an
interesting problem to study the propagation of relativistic mass-energy (e.g., light) during this most
highly nonuniform epoch, so soon after the Big Bang.

A useful and well known model of the anisotropic early universe is the Mixmaster model [1], consist-
ing primarily of a series of anisotropically expanding (though homogeneous) “Kasner” epochs; during
a specific Kasner epoch, each spatial axis expands as a polynomial with a constant but potentially
distinct power of cosmic time ¢.

Previous Kasner energy propagation studies (e.g., [2, 3, 4, 5, 6]) have often been restricted to
highly simplified situations — such as obtaining just the first few terms of approximate series solutions
to the wave equations, or considering wave propagation along only a single axis, or limiting the study
to only a single set of Kasner expansion rates (often the axisymmetric case with Kasner coefficients
[2/3,2/3,—1/3]). For the research introduced in this paper, we obtain exact solutions of propagating
electromagnetic (test) fields in Kasner metrics for a wider range of cases, by obtaining full solutions
of the Einstein-Maxwell equations for as varied a selection of Kasner indices as possible.

2 Formalism
The Kasner metric is specified as [1]:

d$2 — dt2 + t2p1 de + t2p2dy2 + t2p3d22 , (1)
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where, say, p1 > p2 > p3. Furthermore, to ensure the vacuum background conditions of the standard
Kasner model, one usually requires the further conditions, p; +pa +ps = 1 and p? + p3 + p% = 1. But,
there is no particular reason why we must enforce these exact Kasner conditions; non-vacuum metrics
(e.g., FRW) are perfectly acceptable (whether or not mass-energy actually dominates the cosmological
evolution), as long as the physically reasonable energy conditions [7] are satisfied. And here, as we are
specifically interested in studying energy propagation in Kasner-like cosmologies, the assumption of
pure-vacuum conditions is not particularly useful. We will therefore consider more general selections
of (real) indices — and rename them p, > p, > p, — to indicate the distinction for these “Kasner-like”
metrics, which do not necessarily possess vacuum backgrounds.
The Einstein-Maxwell equations in curved spacetime (for charge-free and current-free volumes)
are:
ayFaﬁ + 8,3F’ya + aangv =0, (2)

and:

a{\/~ |9 |F*7} =0 . 3)

Furthermore, the observable electromagnetic fields can be related to the electromagnetic tensor
F,p as follows [8]:

EOY = F,zU" | (4)
1
BObs — —5622}775(][3 : (5)

where we will ultimately define the electromagnetic tensor components in terms of the observed fields
by considering a rest observer in the Kasner-like expansion, with 4-velocity U? = [1,0,0,0].

Lastly, we re-scale each of the fields (by appropriate powers of t), to eventually simplify the
Maxwell-like equations that will be derived below: e.g., £, = (tP= 1Py _pZ)E?bS, plus cyclic permutations
over {z,y,z} (with identical re-scaling definitions for the B-fields).

Plugging this electromagnetic tensor and the general Kasner-like metric above into the Einstein-
Maxwell equations, we obtain the divergence equations:

- — —

V-E=V-B=0, (6)

which for these re-scaled fields look exactly like the usual flat-spacetime versions; along with the
following curl-like equations (which are not identical to the usual flat-spacetime ones):

OLE, = (tP=~PutP=)g, B, — (t P+ Py P)9. B, (7)

plus cyclic permutations (and substitutions {F; — B;, B; — —FE;}) to obtain the rest of the curl-like
Maxwell equations for all six electromagnetic field components.

Now, in the typical (flat spacetime) case, it is a simple matter to use basic vector identities and
the divergence equations above to obtain a set of completely decoupled (second-order differential)
wave equations for each of the 6 F- and B-fields, independently. But in this case, where the curl-
like equations in Eq. 7 contain additional powers of ¢ as coefficients, it is not possible (for general
polarizations and propagation directions) to obtain fully-decoupled second-order wave equations.

For example, defining the operator:

{TV?} = [t72P02 + 7P +t%=02] (8)

we can obtain one possible second-order equation as:
2B, + 20,5, — (TV2)E, — PP (mrempitryg B 4 (P9, )| (9)
t ~x n tx - ¢ yz zDy| -
This resembles a nonhomogeneous differential equation in which the (orthogonal-axis) magnetic

fields are the source of driving terms for this electric field. Unlike the flat-spacetime case, such driving
terms on the right-hand side cannot generally be eliminated. They can, however, be modified (using
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the curl-like equations) into a variety of forms, with some of them being more useful for obtaining
specific solutions (e.g., for particular sets of Kasner indices, or E- and B—field polarizations and/or
wave propagation directions). Thus, Equation 9 for FE, can be expressed in two distinctly useful
alternative forms:

O2E, + W&Ex {TVHE, = 2@[(t‘pf‘py+pZ)0sz] , (10)

or:

(pz B py)

OB, + P 08, TV} B, =20 D) vy (1)

Sets of formulas similar to Equations 9-11 can be obtained all of the other F- and B—field components
as well, through cyclic permutations over {x,y, z}, in addition to employing the substitutions {F; —
Bi, Bz — —Ez}

Although these second-order differential equations cannot be made homogeneous by zeroing out
their right hand sides — i.e., the F- and B—fields cannot yet be completely decoupled — we can simplify
the coupling between these fields by choosing convenient forms of the second-order equations for each
of them. Thus we can break up the six E- and B-fields into three groups of coupled pairs — such as,
{E, & By,E, & B,,E, < B,}. (For example, Equation 10 is an example of E, < B, coupling, but
Equation 11 is an example of E, < B, coupling.) Then, for each coupled pair of fields (e.g., E, < By),
we can uncouple them by taking two more time derivatives, plugging the curl-like equations for F,
and B, into one another repeatedly, ultimately resulting in a fourth-order, homogeneous differential
equation for E, (or for B,, depending upon whether we started with the equation: O?Ey + ..., or
with the equation: 2B, + ...). The resulting fourth-order equation for E, will now be completely
decoupled from B, (and obviously from all of the other fields). This process can be done for all six of
the E- and B-field components, rendering them entirely independent of one another for the purpose
of solving each of their fourth-order differential equations.

As part of this process, we assume separation of spatial variables, with spatial functions of the
form, sin / cos(kyx + kyy + k. z), so that we can replace all spatial derivatives (in their action upon the
electric or magnetic fields, F; = E; or B;), via the prescription:

2 k2 k2

k
_{TVﬂ}F;:[§£§4-#;J+-ﬂ;]F}. (12)

The resulting fourth-order differential equations are cyclic in {x,y, z}, and are exactly the same
(interchanging E; <» B;) for F; = E; or B;. Thus all six of these equations can be specified by writing
a single one of them out; for example:

2(1 + 2p,
0=0'F, + (tp)fﬂ
k2 ky k21
{2, + 75271 o) Tl T e = (py — PV 1O
5 G (U 20 = 2py) g+ (1 200 = 202) ] o+ 52 = D)% = [py — P )}OF (13)
k:g k; kg 2
il + i T

k2 2
z[(pgc —py)(L+ pz +p: — 3py)t2—§y + (pz = p2)(1 4+ pu +py — 3pz)tl2%]}Fx :

The necessity of going to fourth-order differential equations to disentangle the fields — for cases
not involving special Kasner indices, propagation or polarization directions (which may sometimes
eliminate the driving terms shown above and collapse the fourth-order equations to homogeneous
second-order equations) — implies that there are (in general) four different functional solutions to each
of the equations for the FE- and B-fields.
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3 Sample Complete Solution for the Simplest Kasner Metric

Fortunately, the solutions to the full fourth-order electromagnetic field equations can often be guessed
from the solutions to the second-order equations, especially when the second-order equations can
(in specific cases) be made homogeneous and solvable. One interesting example in which the fields
can be completely solved for — for fully general propagation directions and polarizations — is that of
7 = {pz,py,p-} = [1,0,0]. (Though this particular Kasner metric is actually conformally flat, the
solutions for this case are instructive.)

In this p = [1,0,0] Kasner case, the second-order equations for F, (= E, or B,) actually are
homogeneous (recall Equations 9-11), uniquely simplifying to:

1 k2
O fot 0ufe + 55 + (b + K2 f2 = 0 . (14)
This differential equation is immediately recognizable [9], and solvable in terms of Bessel functions of
imaginary order (from which real combinations can straightforwardly be constructed [10]):

For F, and F;, however, the second-order differential equations (derived via cyclic permutations
of any of Equations 9-11, and substitution with p'= [1,0,0]) are not homogeneous, so we need four
independent functions for the full solution. A clue to find them is obtained from the well known Bessel
recursion relation:

J ik, [/ ky + k2 1] oc t{J i, 1) [\ k) + K2 8] + Jwin, 1) [\ By + K2t} (16)

This suggests that the four functions needed for the solutions are:

H{ I (wikr1)[\/ k2 + k2 t]} (17)

from which we can construct the necessary linear combinations. In that regard, we recall one other
Bessel recursion relation:

O Jxin, [\/ 5 + k2 t]} o< t{(xin,—1)[\/ K§ + k2 t] — Jewiw, 1)/ K5 + K2 t]} (18)

With these Bessel function combinations, we can construct the full electromagnetic solutions for
the p'= [1,0,0] Kasner metric — for general propagation direction, assuming nonzero k, k,, and k, —
by splitting the problem into two different polarization cases: (i) B, = 0, with nonzero E, driving B,
and B;; (ii) £, = 0, with nonzero B, driving E, and E.. Fully consistent solutions (with appropriate,
finite coefficients, though not shown here) can then be found for both cases, noting first that all of the

solutions for this Kasner metric turn out to have the same Bessel function argument, [, /k% + k2 t].

In Case (i), the second-order differential equations for all of the E-fields can be brought into
homogeneous form (since B, = 0, and p, = p, = 0 for this Kasner metric), and thus they have only
the two main solutions, {E, Ey, E.} o Jiik,. The magnetic fields (which are driven by E, # 0) can
be shown to have the form: B, =0, {B,, B.} o t0[J1,]. In Case (ii), alternatively, the roles for the
electric and magnetic fields are obviously switched, with the functional forms of their solutions being
the same as in Case (i), but with E; <+ B;.

4 Selected Solutions for More General Kasner-like Metrics

Having completely solved the Einstein-Maxwell equations in this very simple Kasner case, it would
be desirable to solve for the electromagnetic fields for all possible Kasner-like metrics, given general
Kasner coefficients {ps, py,p-}. But this happens to be a highly nontrivial problem, since even the
second-order equations are usually not solvable in terms of closed-form functions (Bessel or otherwise).
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To clarify the problem, we note that the second-order equations for the electromagnetic fields
always reduce to something of the form:

Npz, Dy, P2 k2 k2 k2
2 Ty PYs Mz Y o« "
O F + —— =0k + [ + g + 5 [F = “RHS (19)

with N[ps, py,p-| representing some numerical expression depending upon the (constant) Kasner p-
indices, and the particular form of the “Right-Hand Side” (“R.H.S.”) preferred. Even if the R.H.S. can
be somehow set (or forced) to zero, this equation is not generally solvable (to this author’s knowledge),

2 2 2
unless the | tfgx th?y tfgz] coefficient is considerably simplified. This can be done in a variety of
ways — such as by setting some of the p-indices equal to each other (i.e., a “cylindrical” metric), and/or
equal to unity; or by dropping one or two of the k; values (planar or on-axis propagation, respectively);

k2 K2 k2 k2 k2
> 3 > thy ] << t27fz )

or by using early-time (% >> [;Tg’y + wiz], for pr > py > p.) or late-time ([
approximations. Unfortunately, any of these approximations (essentially equivalent to one another)
are highly restrictive of the physical possibilities of interest.

Nevertheless, there are selected cases for which we are able to obtain exact closed-form solutions
to the full Einstein-Maxwell equations. As noted above, the early- and late-time approximations are
equivalent to propagation along a single axis (which is the actual asymptotic physical behavior of
the propagating fields [3]); and though not shown here, we have obtained explicit solutions for every
possible case involving a single propagation axis (e.g., kz # 0, {ky, k.} = 0).

It is also possible to obtain exact solutions for two-dimensional propagation — i.e., {ky, ky} # 0,
k. = 0 — where at least one of {p,,py} (or both) are equal to unity. We divide the solutions up into
three different index cases:

Case (I): p» =1, py < 1. Here, the electromagnetic field solutions are in terms of Bessel functions,
F; o [(t72P)J1o(a)], with the Bessel order and argument given by:

B~ 12 by
NE R = Y

1—p, ’ 1—py
Note the interesting result that the order is only complex — and thus, the Bessel function is only
oscillatory as t — 0 — for k, > |Ap|. In a sense, the anisotropically-expanding Kasner spacetime
acts like a “waveguide”, only permitting the propagation of waves with a sufficiently small projected
wavelength in the x-direction (i.e., sufficiently large k).

Case (I1): p; > 1, p, = 1. Here, for the field solutions F; o< [(t~2P)Jin(a)], the Bessel order and
argument are given by:

1 (Ap)? — kj ko (-

Ap—i[px—li(l—m)}v@—ﬁ —qt( ). (21)

In this case (analogously with the previous one, but now with p, equal to unity rather than p,), the
Bessel order is only complex for k, > |Ap|. But another significant difference here, since (1 —p,) <0,
is that the Bessel argument actually goes to & — —oo as ¢ — 0. This means that the electromagnetic
waves will experience an infinite number of oscillations (in the x- and y-directions, since {k;, k,} # 0),
in the finite period of time going back to the Big Bang; but that result actually makes sense in this case,
since with {ps,p,} both > 1, there is no “Horizon Problem” in the z- or y-directions anyway, since
they have formally infinite particle horizons even in the geometrical optics (light ray) approximation.
Case (III): Lastly, we consider the double special case of p, = p, = 1, which also has infinite
particle horizons in the a- and y-directions. (Note that we could also solve for this case with k., # 0,
but that would not be essentially different from Case (I).) For this case, the solutions are not given in

1
Ap==%-(py—p:), Q=

5 t=pw) | (20)

)

terms of Bessel functions; instead, in terms of k = | /k2 + k2 and Ap = [(1—p.)/2], the electromagnetic
fields are of the form:
F; o< {(t72P) cos /sin [(v/k2 — (Ap)2)(Int)]} . (22)

These solutions, similar to the above cases, are only oscillatory for & > |Ap|; but when that condition
is satisfied, there are an infinite number of oscillations in both the limits ¢ — 0, and ¢ — oco.
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5 Conclusions

We have studied the propagation of (test-field) electromagnetic waves in anisotropic, Kasner-like
metrics by obtaining exact solutions for the Einstein-Maxwell equations for a variety of propagation
directions, polarizations, and Kasner expansion indices. These solutions allow us to go beyond the
geometrical optics (light ray) approximation, revealing interesting behaviors of the fields, such as (in
several cases) Bessel function solutions, and “waveguide”-like behavior for which the unequal expansion
rates in different directions places a lower limit on certain wavenumbers of the light, preventing it from
propagating freely if the wavelength (projected along certain axes) is too large. Furthermore, we find
that the oscillatory behavior of the waves going back towards the Big Bang (¢ — 0) generally agrees
with expectations stemming from the finite or infinite nature of the formal particle horizons for the
various axis directions, given the power of cosmic time ¢ governing the expansion rates of each of these
axes.

In contrast to previous studies [11], we demonstrate that there are, in fact, nonhomogeneous driving
terms coupling the various electric and magnetic fields together in the second-order differential wave
equations, forcing us to obtain fourth-order differential equations for the fields in order to obtain
independent equations (and solutions) for each of them. This implies that there are actually four
solutions for each of the fields, rather than two solutions each (except for certain propagation directions
and polarizations for which the coupling terms in the second-order equations get zeroed out).

Fortunately, the solutions to the full fourth-order equations can often be “guessed” from the
solutions to the second-order equations, obtainable when the nonhomogeneous driving terms can
somehow be discarded; but the biggest obstacle in the way of solving for all possible cases, is due to
the lack of closed-form (Bessel-type function) solutions for the most general sets of Kasner indices
{pz,py,p-} and propagation wavenumbers {k;,k,,k,} # 0. Obtaining fully general and complete
solutions to all Kasner-like metrics would require us to be able the solve even those second-order
differential equations which do not correspond to varieties of Bessel-type equations with currently
known exact solutions.
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