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A Cosmological Truism (which might actually be true!) :

» Before the universe was Homogeneous & Isotropic,
it was Inhomogeneous and Anisotropic!

(How DID THE BIG BANG HAPPEN, ANYWAY?)

+ The focus of many cosmological studies is to get rid of the

pre-Homogenized epoch as soon as possible (we‘ve gotten very good at this)

» But given that the “initial” distribution of matter & energy is a great source
of (aesthetic? philosophical? fine-tuning?) consternation, it is an interesting
problem to study the propagation of relativistic mass-energy (e.g., light),
during this Very-Early-Universe epoch

+ A useful & well-known model of the anisotropic early universe

is the Mixmaster model, consisting largely of a varied series of
Homogeneous-but-Anisotropically-Expanding “Kasner” Epochs

» Previous Kasner energy prop. studies often focused on approximations
(light ray propagation, series expansions, neglected driving terms)
or limited special cases (e.g., Kasner coefficients {2/3, 2/3, -1/3})



The Kasner ds? = —dt? + (t?P1)dx? + (t?P2)dy?+(t*P3)dz>

1.0

0.8

0.6

0.4

0.2

metric: With: p; + p, + p3 = p1° +p2° +p3° =1,
& [ (... for vacuum background: T#¥ = 0),
L And with: p; > p, = p3 , = p3 < 0 (contraction)

0.2

-0.4

1
0.2 04 06 |08 N0 u T

B ﬂp:;

But, there is no particular reason why we “must” enforce the Kasner
conditions! Non-vacuum metrics (e.g., FRW) are perfectly acceptable
(whether or not mass-energy influences the cosmological evolution),

as long as reasonable Energy Conditions are satisfied.

» We will thus consider general {p,, p,, p,}, without prior restrictions.



Electromagnetism in Curved Spacetime:

Einstein-Maxwell egn’s: 0y Fupt 0gE,q + 0qFp, =0
(charge/current-free volumes) 9 (/=Detlgm] F%¥} = 0

With E&B-Fields seen by Kasner (Rest-)Observer w /4-Velocity UP :
Obs __ Obs _ _ 1 5
E,""" = bl = — = Eap UP (U = (1,0,0,0)}

(where €,5"? is the Levi-Civita anti-symmetric tensor, not symbol)

Hence (and w/cyclic permutations): Fy, = —/—G¢t Ex Obsss —E, Obs

Fey = \/gxx gyy/.gzz BZObS = [t"Npx + Py - pz)] BZObS

Also, to simplify the Divergence Eq’s, define Re-Scaled Fields thus:

E, = (tpx+py—pz) E, Obs , (and w/cyclic
permutations
over {x/y/Z})

B, = (tPxtPy~Pz) B, Obs _ = Fy,



Resulting Maxwell Equations for general {p,, py, p,i:

e - —

V-E=V-B=0
0.E, ={ [t(_px - py + pz)] asz} - [t(_px + Py — pz)] asz}
(= with Cyclic Perm. over {x,y,z}, and for {E; = B;, B; > —E;})

Recalling the usual trick to get independent 279-Order Diff. Eq’s. for the 6 Fields:

Minkowski (for a Homogeneous wave eq'n): 0,E = VxB, 0,B=—-VXE,
0 €>
o Px7xE =P F)-V2E =-7 x 8,8 =- 0,{7 x B} =-02E , 02E - VZE = 0

BUT, for Kasner case, w/factors of t in the “curl” eq'ns: 9,{(t") §} + (tM)o,B,
a Homogeneous 2"4-Order wave eq'n is not obtained & we get (w/cyclic perm.):

OZE, + (22) 8,E, — {(t7P~)37 +IE5<E0icT IR

- _(pzzpy) {[tCPx=Py+PI] 3, B,} + { [((-Px+Py=P2)] 3,B},

...s0 that the {E;< Bj ;} fields are not uncoupled in the 2"4-Order eq'ns!




Uncoupling the E-, B-fields via the Non-Homogeneous “Driving” terms:

Using the “curl” eq'ns, we may write the 2"-Order Diff Eq'n for a given field (e.g., E,)
in 3 different ways... (and defining: {tV?}E; = {(t?Px)02 + (t*P¥)d7 + (¢7?P2)dZ} E; )

02E, + () 0,E, — {tV2)E, = =22 {[e(Px =Py +22)] 9B} + { [t(-P=*Py=P2)] 9,B,)
or.

O7E, + [T 5,5, — (t77)E, =2l
or.

07, + [P 5, F — (t7?)E, = 2 P22 ({[e(Px Py =P2)] 9,B,)

Doing this appropriately for all 6 fields, the 6 {E;< B; ; } coupled eq'ns can be broken

into 3 sets of {E;«> B;} pairwise-coupled eq'ns... e.g., {E;< B}, {E;© B}, & {E;© B, };

Then, for all 6 fields F; = {E;, B;} , w/spatial dependence: cos/sin(k,x + k,y + k,z),
—{tV2}F; = |(¢72Px)kZ + (t2P¥)k2 + (t2P2)kZ] F;,

and we can thus take extra spatial derivatives, replace w/k’s, and plug the
pairwise-coupled into one another, to remove the coupling... e.g.:

0, 0ZEy ~ —kZ B, 2 (eq'n for) 9B, = (more spatial deriv’s) = (uncoupled eq'n in OgE, !)




Fully-Uncoupled 4*-Order Diff Eq'n (for, e.g.,) Ex. = {E,, B }:
0tF,

2(1 + 2p,)
+[————10¢F;

+ {2 [(t72P)k2 + (£72P) k2 + (7 %P9)kZ] + = [2py + 5p2 — (Dy—p;)? ] } OFF,

+{ 2[€2P0)kE + [(£72P2)k2(1 + 2py — 2py)] + [(E P22 (1 + 2p, — 2p,)]]
1
i t_s((sz_l)[pg n (py_pz)z]) } atFx
+ {[(E=2Px)k2 + (£72P7 )2 + (t~2P2)k2]
2 L
+ S [ (%) k§(px = Dy)(A + Dx + Pz = 3py)
+ (t—sz)kg (px 2 pz)(l + Px + py _ 3pz> ]} Fx
= ()
(& equiv. 4™-Order Diff Eq'ns for F, = {Ey, By} & F, = {E,, B,} via cyclic permutations)

=» Each field has 4 sol'ns, not 2! (...except for Kasner cases & polarizations
where the 2"-Order Driving Terms on the R.H.S. are zero.)



Exact Soln’s for an interesting (though conformally flat & vacuum Kasner)

Special Case, good for general k= (ky, 6 ky): {Pxo Dy p,} = {p1, 02,3} ={1,0,0}

In this case, the 274-Order eq’ns for F, = {E,, B,} are Homogeneous:

OZF; + - a F; + | = k2+k2 F; =0, thus possessing the 2 soln’s:
t t )

E, «] tiky [\/ k32, ol kzz t] (...taking the two real combinations.)

For the 4!-Order eq'ns for F,, = {Ey, By} & F, = {E,, B,}, the 4 sol'ns (good for each)
can be guessed from Bessel recursion relations:

Fy, « t{](iikx—l) [ /kal + k2 t] t J(dikg+1) [ /kal + kZ t]} X Jtik, [ /kal + kg t]

..are 2 good soln’s, and ..

<o Wi NI O

...happen to be the other 2 good sol'ns.)

Finally, considering Polarization states, these soln’s can be illustrated as follows...




Matching these 4t"-Order Soln’s via the Maxwell Eq'ns for this p = (1,0,0)
Kasner case, the fields can be written as superpositions of 2 diff. Polarizations:

Nonzero E, drives B, & B, : Nonzero B, drives E), & E, :

Xt k= (ky ky k) k = (ky ky, k,)

{B,,B,,B,}
J+ixk,

Y, Z X const.



The Difficulty in Solving cases w/ general Kasner p-Values...

We can often “guess” the 4 soln’s for the “driven” fields w/Nonhomogeneous
2nd-Order eq'ns, from the 2 soln’s for the Homogeneous eq'ns (R.H.S. always zero
for some polarization)... but only if the 2"-Order eq'ns are solvable :

agFi+@atFi+[ + ky ]F 0

t2px = 2P tZP

=>» This is not typically solvable (to my knowledge) in terms of
the usual Bessel Functions, for general values of (p,, p,,p,) !

So, “Solvable Cases”:

¢ “Early-Time” or “Late-Time” Approximations (let p, > {p,,p.}),
2Pk > (177K + (2kE) or [ 29Kk + (e=2)kg] << (2P0

> Unique & Consistent 4-Order eq'ns cannot be produced, unless two of {k,, ky, k,)
are zero... = 1-Dimensional Propagation! (...all solved here as Special Cases...)

< 2-Dimensional Propagation - e.g., Kk = (kx, ky,0) - but need p,, = 1 and/or p, = 1

% (...Soln’s for general (p,,p,, p,) still being sought!)



Solvable cases w/2-Dimensional* Propagation, with: k= (ky ky,0) , Dx = Dy

(* Or, 3-Dimensional Propagation with Cylindrical Symmetry...

ifp, =py, ky > |k;+kZ ; ifp,=py, kx> Vki+kZ)

(I) px =1, py, <1 (No Horizon Prob. in x-dir.): Soln’s ~ {(t‘AP)]iORD |[ARG ]}, with:

4 |(ap)2-kZ k _
= + = — = == =Y (1 py)
Ap=+-(py—pz) , ORD Gy ARG G=py) t

(N.B.: ORD only complex - typically oscillatory - for {k,> Ap} )

(II) px > 1, p, = 1 (No Horizon Prob. in {x, y}-dir’s): Soln’s ~ {(t‘Ap)]iORD [ARG]}, with:

/(Ap)z—k2
ORD =Y— " | ARG=—%_ (0-po

(1-px) (1-px)

(N.B.: ORD only complex for {k,> Ap} ; And, ARG - —0, ast —> 0)

() py = py = 1, with: k = /k,%+k§ , Ap=-(1-p,),

Soln’s ~ {[t72P] cos/ sin[\/k? — Ap? Int]}  (N.B.: Only oscillatory for {k > Ap})

Ap = = [p, — 1 & (I=E .

N | =




