Neutrino mass and cosmology with Ly- α forests

Christophe Yèche CEA-Saclay Ifu

Texas Symposium,

Geneva,

December 15, 2015

SDSS BOSS/eBOSS

BOSS 2009-2014

eBOSS 2014-2020

SDSS spectroscopic survey

- > 2.5 m Sloan telescope (New Mexico)
- > Survey area: 10,000 deg²
- > Redshifts: 1000 fibers

Ly- α forests, matter tracers

1D power spectrum

Correlation between the pixels of a line of sight
 Proxy of the matter down to scale 1 Mpc

Principles

- > Use Ly- α forests of quasars (2.2<z<4)
- > HI absorption in IGM along the line of sight of Q50s
- > We expect low density gas (IGM) to follow the dark matter density

Impact of neutrino masses

- Free-streaming \Rightarrow suppression of small scales
- Suppression factor $\Leftrightarrow \Sigma m_{\nu}$
- Independent measurements (CMB, Galaxies, 1D Ly- α)
- Suppression is z-dependent

Ly-α:

- Access to small scales (max effect)

- Large z-range [2.1; 4.5] -

- Caveat: non-linear regime and power spectrum of flux (not mass density)
- ⇒ Hydro/N body simulations

Ly-a forests in BOSS

- > 14000 DR9 QSOs out of 60000
- > Selected for
 - quality (no flagged pixels, no high density absorbers)
 - SNR > 2
 - resolution < 85 km/s

. to obtain $\sigma_{
m syst}$ ~ $\sigma_{
m stat}$

Redshift distribution

Palanque-Delabrouille., Yèche, Borde et al. (2013)

1D Power Spectrum

- > Detailed study of spectrograph resolution, noise, lines of sky, correlation with other absorbers...
- Need simulations to come back to linear matter power spectrum

Hydro-dynamical simulations

- > 3 Species: dark matter + baryons
- + 3 degenerate-mass neutrinos
- > Methodology:
 - Linear (CAMB) to z=30
 - Simulations from z=30 to z=2.0
 - Hydro/N-body simulations

Hydro-dynamical simulations

$$z = 15 \rightarrow 0$$

3 species

- Baryons
- Dark matter
- Neutrinos

Stars formed

from baryons

Borde et al. (2014) Rossi et al. (2014)

(McDonald, 2003)

Splicing technique

Combine large box & high resolution (using a transition simulation)

 \Leftrightarrow equivalent to 100 Mpc.h⁻¹ with 3072³ particles per species

- Comparison with high resolution simulation~1% agreement
- Broken-line model with2 free nuisance parameters

Grid parameter space

> Grid of simulations

→ 2nd-order Taylor expansion for cosmo & astro parameters centered on Planck (2013)

$f(\mathbf{x} + \Delta \mathbf{x})$	=	$f(\mathbf{x}) + \sum_{i} \frac{\partial f}{\partial x_i}(\mathbf{x}) \Delta x_i$
		$+\frac{1}{2}\sum_{i}\sum_{j}\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(\mathbf{x})\Delta x_{i}\Delta x_{j}$

	Range	Central value	Parameter
	± 0.05	0.96	$n_s \dots$
Cosmology	± 0.05	0.83	$\sigma_8 \ldots \ldots$
Cosmology	± 0.05	0.31	$\Omega_m \dots$
	±5	67.5	$H_0 \ldots \ldots$
}i <i>g</i> M	± 7000	14000	$T_0(z=3)$
JEM	± 0.3	1.3	$\gamma(z=3)$
Costical denth	± 0.0020	0.0025	A^{τ}
Optical depth	± 0.4	3.7	$\eta^{ au}$
Neutrino	0.4, 0.8	0.0	$\sum m_{\nu} (\text{eV})$

- > 36 simulations + 3 normalizations (+ numerous sanity checks)
- > > 4Mhrs CPU at TGCC CURIE supercomputer
- 23 nuisance parameters (Resolution, Noise, UV fluctuations, AGN or SN feedback, DLA and splicing)

Constraint on Σm_v

Limits:

 \triangleright With Ly- α alone:

 $\Sigma m_v < 1.1 \text{ eV } @95\%CL$

> With Planck 2015 alone:

 $\Sigma m_{v} < 0.72 \text{ eV } @95\%CL$

> Combined with CMB (Planck 2015)

 $\Sigma m_v < 0.12 \text{ eV}$ @95%CL

	(1) Ly α	(2) Lyα	(3) Lyα
Parameter	$+H_0^{Gaussian}$	+ Planck TT+lowP	F Planck TT+lowP
	$(H_0 = 67.3 \pm 1.0)$		+ BAO
σ_8	0.831 ± 0.031	0.833 ± 0.011	0.845 ± 0.010
n_s	0.938 ± 0.010	0.960 ± 0.005	0.959 ± 0.004
Ω_m	0.293 ± 0.014	0.302 ± 0.014	0.311 ± 0.014
$H_0 \text{ (km s}^{-1} \text{ Mpc}^{-1})$	67.3 ± 1.0	68.1 ± 0.9	67.7 ± 1.1
$\sum m_{\nu}$ (eV)	< 1.1 (95% CL)	< 0.12 (95% CL)	< 0.13 (95% CL)

Neutrino mass hierarchy

Direct measurement with tritium β -decays: ${}^3H \rightarrow {}^3He + e^- + \nu_e$

- \rightarrow Current limits m_{β} <2eV
- → Sensitivity of 0.2 eV in near future (KATRIN experiment)

Complementary with cosmology

With $\Sigma m_v < 0.12 \text{ eV } @95\%CL$

- > NH is "favored"
- > If disagreement with KATRIN experiment
- ⇒ Indication of new physics

Dark radiation - Neff

$$ho_{
m R}=
ho_{\gamma}+
ho_{
u}=\Big[1+rac{7}{8}\Big(rac{4}{11}\Big)^{4/3}N_{
m eff}\Big]
ho_{\gamma}$$

Sensitivity to the number of neutrino species

- \triangleright Full degeneracy in Ly- α data alone
- \triangleright Constraint when combining Ly- α and CMB (Planck 2013)

$$N_{eff} = 2.91^{+0.21}_{-0.22} (95\% CL)$$

$$\Sigma m_{v} < 0.15 \text{ eV}$$
 (95% CL)

$$\Rightarrow$$
 N_{eff} = 4 excluded at > 5σ

Rossi, Yèche, et al. (2015)

WDM: Thermal relics

All dark matter is WARM

Add sterile neutrinos in hydro simulation grid

- Lack of power on small scales
- Detectable in BOSS if significant effect, i.e., if m_x small

Sterile Neutrino?

95% CL from BOSS Lya

$$m_X \ge 4.35 \text{ keV}$$

$$m_s \ge 31.7 \text{ keV}$$

Boyarsky, Lesgourgues, Ruchayskiy $m_s \ge 12.1 \text{ keV}$ (WMAP-5 &SDSS)

Seljak, Makarov, Trac $m_X \ge 2.5 \text{ keV}$ (SDSS Ly-a)

Viel, Bolton, Haenelt $m_X \ge 4.0 \text{ keV}$ (HIRES & SDSS)

(Baur, Palanque-Delabrouille, Yèche et al. (2015))

Strong limit on pure WDM model in case of non-resonantly produced neutrinos

Conclusions

- \succ High potential of Ly α forest on $(n_s, \sigma_8, \Omega_m, H_0, \Sigma m_v)$
 - Sum of neutrino masses $\Sigma m_{_{\rm V}} < 0.12$ eV (95% CL) from Lya+CMB
- \triangleright Constraint on sterile neutrinos from Ly α
 - m_{sterile} > 31.7 keV (95% CL) in case of non-resonantly produced neutrinos with Dodelson-Widrow model

Prospects

Lower statisticaluncertainties (high z):BOSS DR12 + eBOSS

High resolution spectra
 VLT (X-shooter) XQ100

Additional Slides

Neutrino mass and large-scale structures

Relaxing the tilt of the primordial spectrum

Running of n_s (dn_s/dln k)

Similar value of running for Planck & for Planck + Ly α

 \Rightarrow Negligible impact on Σm_{ν} of tension on n_s and improvement of $~\chi^2$ by ~11

$$\Sigma m_{v} < 0.20 \text{ eV}$$
 95%CL (TT+lowP + Ly\alpha)
 $\Sigma m_{v} < 0.12 \text{ eV}$ 95%CL (TT+lowP + Ly\alpha +BAO + EE+TE)

Sterile neutrinos

Data set	Lower boun	d on $\frac{m_X}{\text{keV}} \left(\frac{m_S}{\text{keV}} \right)$	
Ly- $\alpha + H_0 \ (z < 4.5)$	4.35 (31.7)		
Ly- $\alpha + H_0 (z < 4.1)$	3.10 (20.2)		
	no running	with running	
Ly- α + Planck (TT + lowP)	3.27 (21.7)	4.55 (33.7)	
Ly- α + Planck (TT + lowP+ TE + EE) + BAO	3.18 (21.0)	4.42 (32.5)	

Without running of n_s

With running of n_s