Neutrino mass and cosmology with Ly- α forests Christophe Yèche CEA-Saclay Ifu Texas Symposium, Geneva, December 15, 2015 ### SDSS BOSS/eBOSS BOSS 2009-2014 eBOSS 2014-2020 #### **SDSS** spectroscopic survey - > 2.5 m Sloan telescope (New Mexico) - > Survey area: 10,000 deg² - > Redshifts: 1000 fibers ### Ly- α forests, matter tracers #### 1D power spectrum Correlation between the pixels of a line of sight Proxy of the matter down to scale 1 Mpc #### Principles - > Use Ly- α forests of quasars (2.2<z<4) - > HI absorption in IGM along the line of sight of Q50s - > We expect low density gas (IGM) to follow the dark matter density ### Impact of neutrino masses - Free-streaming \Rightarrow suppression of small scales - Suppression factor $\Leftrightarrow \Sigma m_{\nu}$ - Independent measurements (CMB, Galaxies, 1D Ly- α) - Suppression is z-dependent Ly-α: - Access to small scales (max effect) - Large z-range [2.1; 4.5] - - Caveat: non-linear regime and power spectrum of flux (not mass density) - ⇒ Hydro/N body simulations ### Ly-a forests in BOSS - > 14000 DR9 QSOs out of 60000 - > Selected for - quality (no flagged pixels, no high density absorbers) - SNR > 2 - resolution < 85 km/s . to obtain $\sigma_{ m syst}$ ~ $\sigma_{ m stat}$ #### Redshift distribution Palanque-Delabrouille., Yèche, Borde et al. (2013) ### 1D Power Spectrum - > Detailed study of spectrograph resolution, noise, lines of sky, correlation with other absorbers... - Need simulations to come back to linear matter power spectrum ### Hydro-dynamical simulations - > 3 Species: dark matter + baryons - + 3 degenerate-mass neutrinos - > Methodology: - Linear (CAMB) to z=30 - Simulations from z=30 to z=2.0 - Hydro/N-body simulations Hydro-dynamical simulations $$z = 15 \rightarrow 0$$ 3 species - Baryons - Dark matter - Neutrinos Stars formed from baryons Borde et al. (2014) Rossi et al. (2014) #### (McDonald, 2003) ### Splicing technique Combine large box & high resolution (using a transition simulation) \Leftrightarrow equivalent to 100 Mpc.h⁻¹ with 3072³ particles per species - Comparison with high resolution simulation~1% agreement - Broken-line model with2 free nuisance parameters ### Grid parameter space #### > Grid of simulations → 2nd-order Taylor expansion for cosmo & astro parameters centered on Planck (2013) | $f(\mathbf{x} + \Delta \mathbf{x})$ | = | $f(\mathbf{x}) + \sum_{i} \frac{\partial f}{\partial x_i}(\mathbf{x}) \Delta x_i$ | |-------------------------------------|---|--| | | | $+\frac{1}{2}\sum_{i}\sum_{j}\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(\mathbf{x})\Delta x_{i}\Delta x_{j}$ | | | Range | Central value | Parameter | |-----------------|--------------|---------------|----------------------------| | | ± 0.05 | 0.96 | $n_s \dots$ | | Cosmology | ± 0.05 | 0.83 | $\sigma_8 \ldots \ldots$ | | Cosmology | ± 0.05 | 0.31 | $\Omega_m \dots$ | | | ±5 | 67.5 | $H_0 \ldots \ldots$ | | }i <i>g</i> M | ± 7000 | 14000 | $T_0(z=3)$ | | JEM | ± 0.3 | 1.3 | $\gamma(z=3)$ | | Costical denth | ± 0.0020 | 0.0025 | A^{τ} | | Optical depth | ± 0.4 | 3.7 | $\eta^{ au}$ | | Neutrino | 0.4, 0.8 | 0.0 | $\sum m_{\nu} (\text{eV})$ | - > 36 simulations + 3 normalizations (+ numerous sanity checks) - > > 4Mhrs CPU at TGCC CURIE supercomputer - 23 nuisance parameters (Resolution, Noise, UV fluctuations, AGN or SN feedback, DLA and splicing) ### Constraint on Σm_v #### Limits: \triangleright With Ly- α alone: $\Sigma m_v < 1.1 \text{ eV } @95\%CL$ > With Planck 2015 alone: $\Sigma m_{v} < 0.72 \text{ eV } @95\%CL$ > Combined with CMB (Planck 2015) $\Sigma m_v < 0.12 \text{ eV}$ @95%CL | | (1) Ly α | (2) Lyα | (3) Lyα | |--|------------------------|-------------------|-------------------| | Parameter | $+H_0^{Gaussian}$ | + Planck TT+lowP | F Planck TT+lowP | | | $(H_0 = 67.3 \pm 1.0)$ | | + BAO | | σ_8 | 0.831 ± 0.031 | 0.833 ± 0.011 | 0.845 ± 0.010 | | n_s | 0.938 ± 0.010 | 0.960 ± 0.005 | 0.959 ± 0.004 | | Ω_m | 0.293 ± 0.014 | 0.302 ± 0.014 | 0.311 ± 0.014 | | $H_0 \text{ (km s}^{-1} \text{ Mpc}^{-1})$ | 67.3 ± 1.0 | 68.1 ± 0.9 | 67.7 ± 1.1 | | $\sum m_{\nu}$ (eV) | < 1.1 (95% CL) | < 0.12 (95% CL) | < 0.13 (95% CL) | ### Neutrino mass hierarchy Direct measurement with tritium β -decays: ${}^3H \rightarrow {}^3He + e^- + \nu_e$ - \rightarrow Current limits m_{β} <2eV - → Sensitivity of 0.2 eV in near future (KATRIN experiment) Complementary with cosmology With $\Sigma m_v < 0.12 \text{ eV } @95\%CL$ - > NH is "favored" - > If disagreement with KATRIN experiment - ⇒ Indication of new physics ### Dark radiation - Neff $$ho_{ m R}= ho_{\gamma}+ ho_{ u}=\Big[1+ rac{7}{8}\Big(rac{4}{11}\Big)^{4/3}N_{ m eff}\Big] ho_{\gamma}$$ #### Sensitivity to the number of neutrino species - \triangleright Full degeneracy in Ly- α data alone - \triangleright Constraint when combining Ly- α and CMB (Planck 2013) $$N_{eff} = 2.91^{+0.21}_{-0.22} (95\% CL)$$ $$\Sigma m_{v} < 0.15 \text{ eV}$$ (95% CL) $$\Rightarrow$$ N_{eff} = 4 excluded at > 5σ Rossi, Yèche, et al. (2015) ### WDM: Thermal relics All dark matter is WARM Add sterile neutrinos in hydro simulation grid - Lack of power on small scales - Detectable in BOSS if significant effect, i.e., if m_x small ### Sterile Neutrino? 95% CL from BOSS Lya $$m_X \ge 4.35 \text{ keV}$$ $$m_s \ge 31.7 \text{ keV}$$ Boyarsky, Lesgourgues, Ruchayskiy $m_s \ge 12.1 \text{ keV}$ (WMAP-5 &SDSS) Seljak, Makarov, Trac $m_X \ge 2.5 \text{ keV}$ (SDSS Ly-a) Viel, Bolton, Haenelt $m_X \ge 4.0 \text{ keV}$ (HIRES & SDSS) (Baur, Palanque-Delabrouille, Yèche et al. (2015)) Strong limit on pure WDM model in case of non-resonantly produced neutrinos #### Conclusions - \succ High potential of Ly α forest on $(n_s, \sigma_8, \Omega_m, H_0, \Sigma m_v)$ - Sum of neutrino masses $\Sigma m_{_{\rm V}} < 0.12$ eV (95% CL) from Lya+CMB - \triangleright Constraint on sterile neutrinos from Ly α - m_{sterile} > 31.7 keV (95% CL) in case of non-resonantly produced neutrinos with Dodelson-Widrow model #### Prospects Lower statisticaluncertainties (high z):BOSS DR12 + eBOSS High resolution spectra VLT (X-shooter) XQ100 ## Additional Slides #### Neutrino mass and large-scale structures # Relaxing the tilt of the primordial spectrum #### Running of n_s (dn_s/dln k) Similar value of running for Planck & for Planck + Ly α \Rightarrow Negligible impact on Σm_{ν} of tension on n_s and improvement of $~\chi^2$ by ~11 $$\Sigma m_{v} < 0.20 \text{ eV}$$ 95%CL (TT+lowP + Ly\alpha) $\Sigma m_{v} < 0.12 \text{ eV}$ 95%CL (TT+lowP + Ly\alpha +BAO + EE+TE) #### Sterile neutrinos | Data set | Lower boun | d on $\frac{m_X}{\text{keV}} \left(\frac{m_S}{\text{keV}} \right)$ | | |--|-------------|--|--| | Ly- $\alpha + H_0 \ (z < 4.5)$ | 4.35 (31.7) | | | | Ly- $\alpha + H_0 (z < 4.1)$ | 3.10 (20.2) | | | | | no running | with running | | | Ly- α + Planck (TT + lowP) | 3.27 (21.7) | 4.55 (33.7) | | | Ly- α + Planck (TT + lowP+ TE + EE) + BAO | 3.18 (21.0) | 4.42 (32.5) | | Without running of n_s With running of n_s