The Radio Evolution of the Galactic Center Magnetar

Joseph Gelfand (NYUAD / CCPP)

Scott Ransom (NRAO), Chryssa Kouveliotou (GWU), Mallory S.E. Roberts (NYUAD), Hind Al Ali (NYUAD), Yoni Granot

جامعـة نيويورك أبـوظـبي NYU ABU DHABI 🌾

Outline

- What is a magnetar?
 - Why care about a magnetar's radio emission?
- Galactic Center Magnetar SGR J1745–29
 - Located only a few parsecs from Sgr A*
- New observations
 - 44 GHz pulsations: Predominantly bright single pulses
 - Broadband continuum radio: Possible change in radio spectrum

What is a magnetar?

Class of isolated neutron star

- ≥10¹⁴ G external magnetic fields
- Even stronger internal magnetic fields
- Emission powered by magnetic field decay

(Illustration: NASA/CXC/M.Weiss)

Why do we think "magnetars" exist?

- Neutron stars with high P, P
 - Dipole Surface B ≥ few×10¹³ G
- Soft Gamma Repeaters (SGRs)
 - Repeated bursts of hard X-rays
 - Giant flares
- Anomalous X-ray Pulsars
 - Blackbody X-ray spectrum
 - L_x≥Ė

(Younes et al. 2015, ar

Magnetar "activation"

Pulsed radio emission from a magnetar

- Radio Pulsars
 Magnetars
 - Stable pulsar shape = Variable pulse shape
 - Constant flux Different riable flux density
 - Steep radio spectrum
 Steep radio
 <li
 - Somew at mechanism? In ear
 - Bright single pulses rare
- Bright single pulses common

polarization

Galactic Center Magnetar SGR J1745-29

Early Radio Observations

44 GHz GBT Observation

Flux distribution of single pulses

Broadband radio spectrum

- JVLA Project Code TOBS0006
 - In expectation of G2 encounter with Sgr A*
 - 1.5 41 GHz in 8 bands
 - A configuration: 2014 Feb 15 – 2014 May 31

GC Magnetar Flux Density

Very crowded 0 1.5 GHz 14 GHz 4 3.0 GHz 🛨 🛨 21 GHz region ▲ 5.5 GHz ▲ 32 GHz Significantly □ 9.0 GHz 41 GHz Cut I Flux Density [mJy] 10.0contaminates magnetar flux u,v filtering **2013-10-26 B**-configuration 1.02014-05-31 A-configuration **Removes diffuse** 2014 03 22 emission 2014 02 15 0.0.1 Give consistent 0.0.1 1.010.0No cut Flux Density [mJy] results (Gelfand et al., in prep.)://v shtml)

Continuum radio spectrum

POSSIBLE interpretation

Summary

44 GHz Pulsed Emission

- ~70% of rotations produce a bright radio pulses
- Log-Normal Flux distribution
- Same parameters as composite 8.5 GHz observations
 1.4 – 44 GHZ Radio Continuum Emission
 - First two epochs single power-law
 - Later two epochs broken power-law (?)
 - Increase in low-frequency flux → "normal" pulsar emission mechanism?