Gravitational Waves from a Dark Sector

Pedro Schwaller (DESY)

28th Texas Symposium on Relativistic Astrophysics ICC Geneva December 16, 2015

Cosmological Phase Transitions

• Early Universe in symmetric phase (e.g. unbroken electroweak symmetry)

GWs from PTs

First order PT \rightarrow Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

• Redshift:

$$f = \frac{a_*}{a_0} H_* \frac{f_*}{H_*} = 1.59 \times 10^{-7} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \times \left(\frac{T_*}{1 \text{ GeV}}\right) \times \frac{f_*}{H_*}$$

• Peak regions: $k/\beta \approx (1-10)$ $f_{\text{peak}}^{(B)} = 3.33 \times 10^{-8} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \text{ GeV}}\right) \left(\frac{\beta}{\mathcal{H}_*}\right)$

GWs as window to dark matter sector

• Motivation for (non-abelian) Dark Sectors

• Phase Transition of SU(N) Theories

• GW Signals from PTRs to ELISA

Based on PRL 115 (2015) 18, 181101

Dark Matter

We have seen DM in the sky:

Maybe DM is just part of a larger dark sector

- Example: Proton is massive, stable, composite state
- DM self interactions solve structure formation problems
- New signals, new search strategies!

Composite DM

- SU(N) dark sector with neutral
 "dark quarks"
- Confinement scale
 - $\Lambda_{\rm darkQCD}$
- DM is composite
 "dark proton"

Bai, PS, PRD 89, 2014 PS, Stolarski, Weiler, JHEP 2015

Similar setup e.g.: Blennow et al; Cohen et al; Frandsen et al; Reviews: Petraki & Volkas, 2013; Zurek, 2013;

DM Motivation

- New mechanisms for relic density, extend mass range:
 - Asymmetric DM GeV-TeV scale
 - Strong Annihilation 100 TeV scale
 - SIMP MeV scale Hochberg, Kuflik, Volansky, Wacker, 2014; + Murayama, 2015
- Advantages of Composite
 - DM mass scale and stability
 - Fast annihilation for ADM
 - Self-interactions for structure formation

The Dark Phase Transition

Phase Transition

- SU(N) dark sectors well motivated
- Confinement/chiral symmetry breaking phase transition at scale Λ_d
 - DM: $\Lambda_d \sim M_{
 m DM}$ (MeV 100 TeV)
 - Naturalness: $\Lambda_d \sim \text{few} \times \Lambda_{\text{QCD}}$
- First order PT in large class of models
- Still possible if LHC finds no new physics

QCD Phase Diagram

 $m_{u,d}$

Phase Diagram II

SU(N) - PT

- Consider $SU(N_d)$ with n_f massless flavours
- PT is first order for
 - $N_d \geq 3$, $n_f = 0$
 - + $N_d \geq 3$, $3 \leq n_f < 4N_d$

Svetitsky, Yaffe, 1982 M. Panero, 2009

Pisarski, Wilczek, 1983

- Not for:
 - $n_f = 1$ (no global symmetry, no PT)
 - $n_f = 2$ (not yet known)

SU(N) - PT 2

- One more parameter: ⊖ angle
- Effect on PT not well studied

M. Anber, 2013 Garcia-Garcia, Lasenby, March-Russell, 2015

• N_d , n_f dependence of PT strength?

Panero, 2009

- The second sec
 - ▶ QCD FOPT? Schwarz, Stuke, 2009
 ▶ GW signal:

Caprini, Durrer, Siemens, 2009

GW signals

GW spectra

- Lot of work on GW from 1st order PT
 - Still difficult to simulate or model
- Here in addition:
 - Transition is non-perturbative
 - Parameters not known take an optimistic guess

$$\beta/H_* = 1 - 10$$
$$v = 1$$
$$\frac{\kappa\alpha}{1 + \alpha} = 0.1$$

()

• Redshift:

$$f = \frac{a_*}{a_0} H_* \frac{f_*}{H_*} = 1.59 \times 10^{-7} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \times \left(\frac{T_*}{1 \text{ GeV}}\right) \times \frac{f_*}{H_*}$$

• Peak regions: $k/\beta \approx (1-10)$ $f_{\text{peak}}^{(B)} = 3.33 \times 10^{-8} \text{ Hz} \times \left(\frac{g_*}{80}\right)^{\frac{1}{6}} \left(\frac{T_*}{1 \text{ GeV}}\right) \left(\frac{\beta}{\mathcal{H}_*}\right)$

T* ~ Few GeV

Broader Range of Signals

Summary

- SU(N) dark sectors well motivated, often feature first order PT (also: Dark Baryogenesis!)
- Exciting possibility to probe
 - GeV scale dark sectors with PTA data (already putting limits!)
 - TeV scale dark sectors with ELISA (see upcoming publication of ELISA Cosmology working group)
- Any ideas to probe the 10⁻⁶ Hz gap?