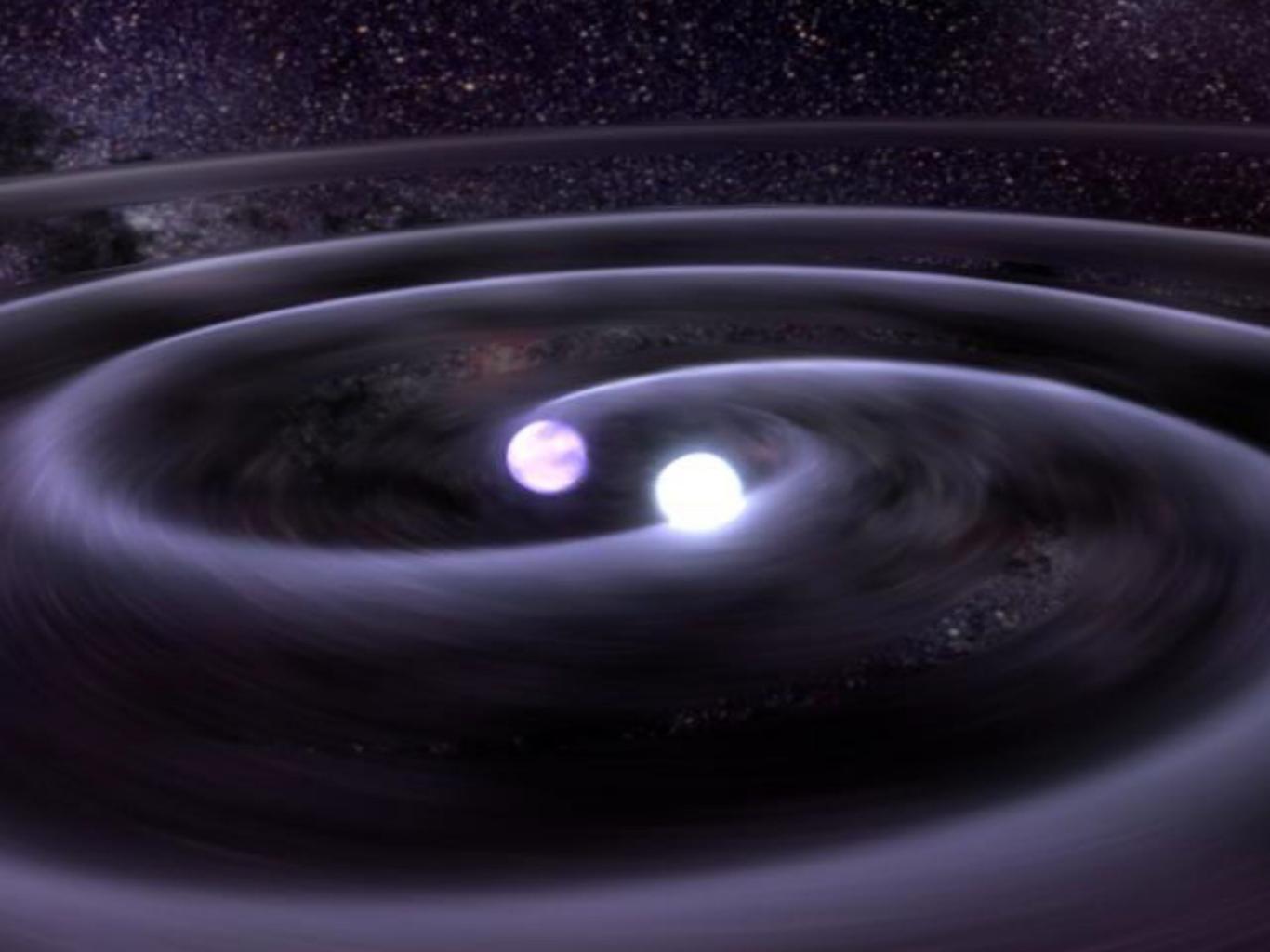
The underlying simplicity of precessing black-hole binaries

Mark Hannam Cardiff University

Texas Symposium December 16, 2015 Geneva



Masses: m_1 , m_2 Spins: S_1 , S_2

(8 parameters)

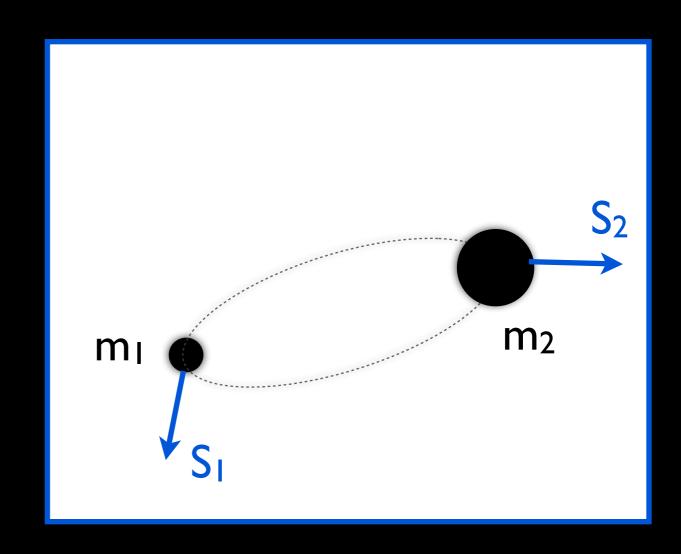
useful combinations:

$$M = m_1 + m_2$$

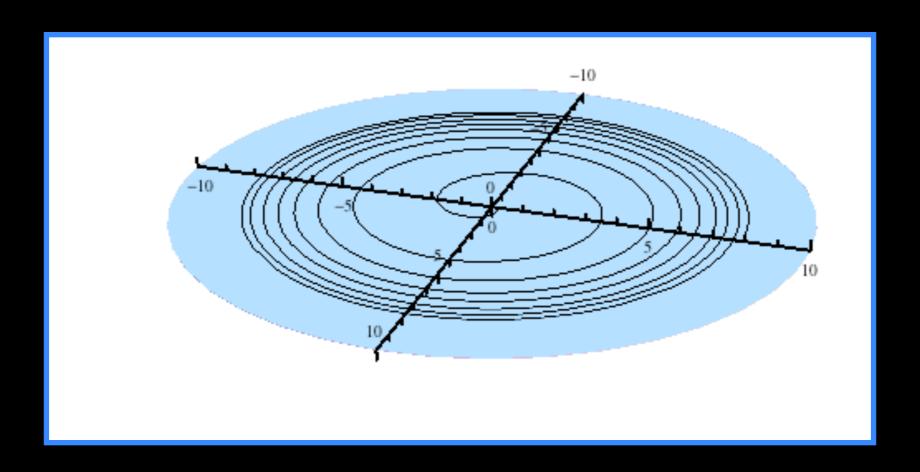
$$q = m_2 / m_1$$

$$\eta = m_1 m_2 / M^2$$

$$\chi = S/m^2$$

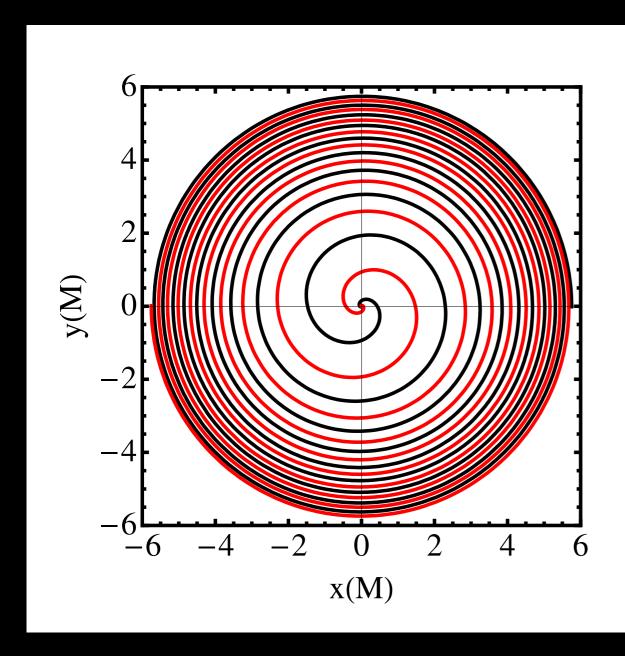


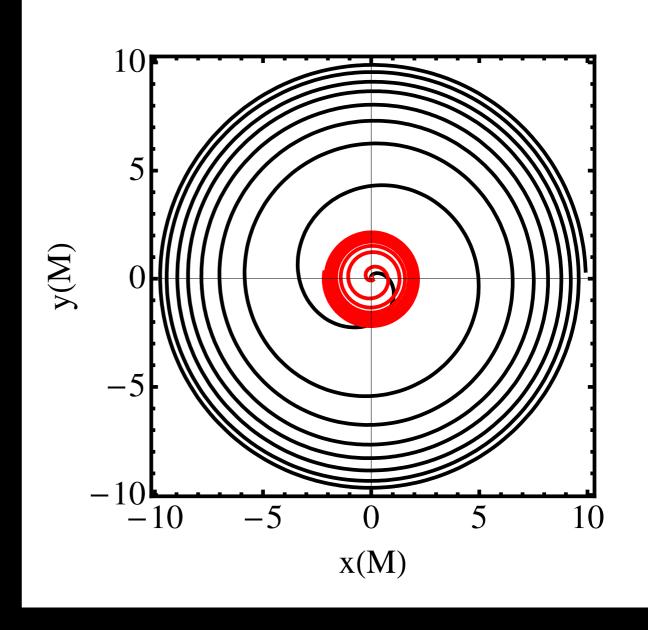
Nonspinning black holes



(Mass ratio 1:4, $\eta = 0.16$)

Nonspinning black holes





Amplitude:

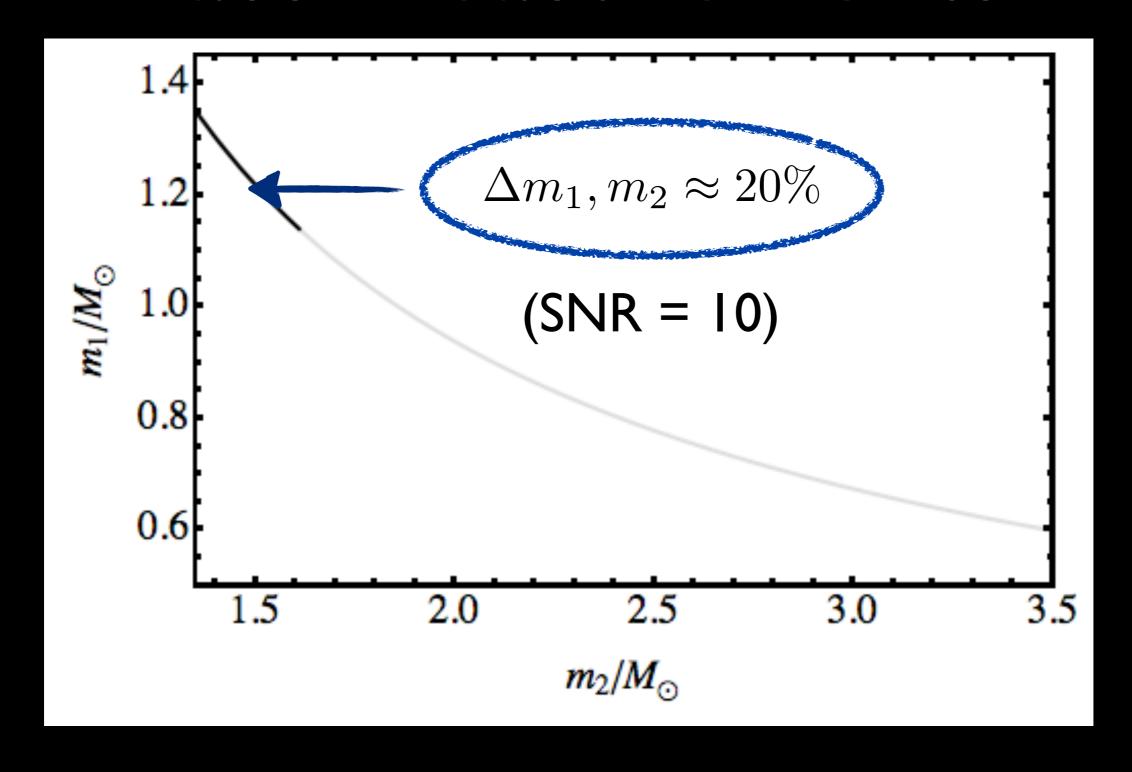
Optimally oriented (face on)

Edge on

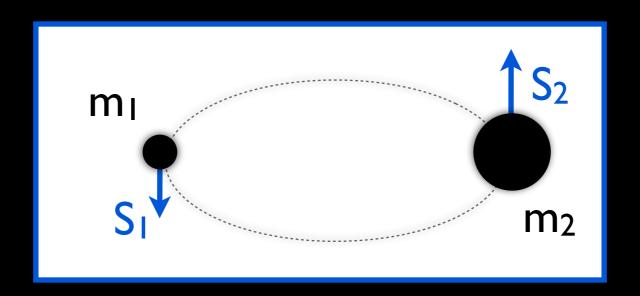
Signal shape is independent of orientation

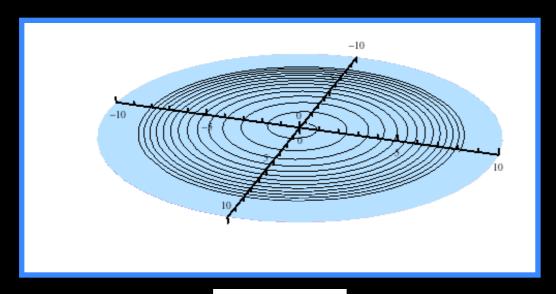
Key information is in the phasing

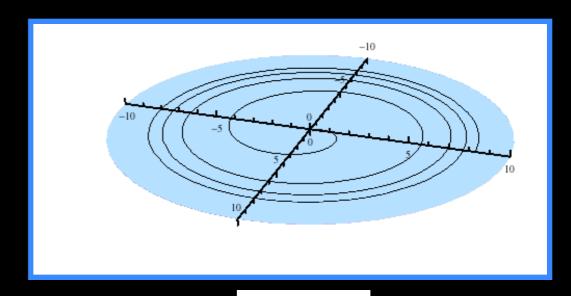
Mass measurements



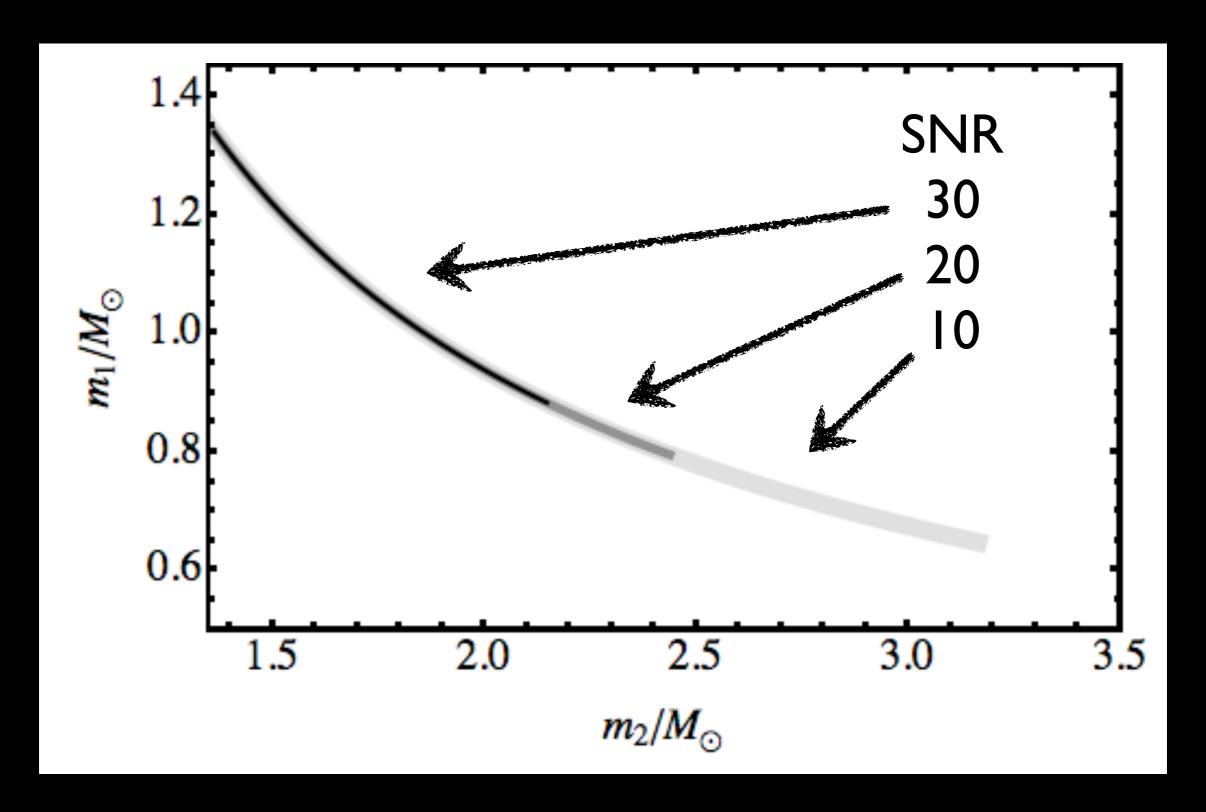
Aligned spins

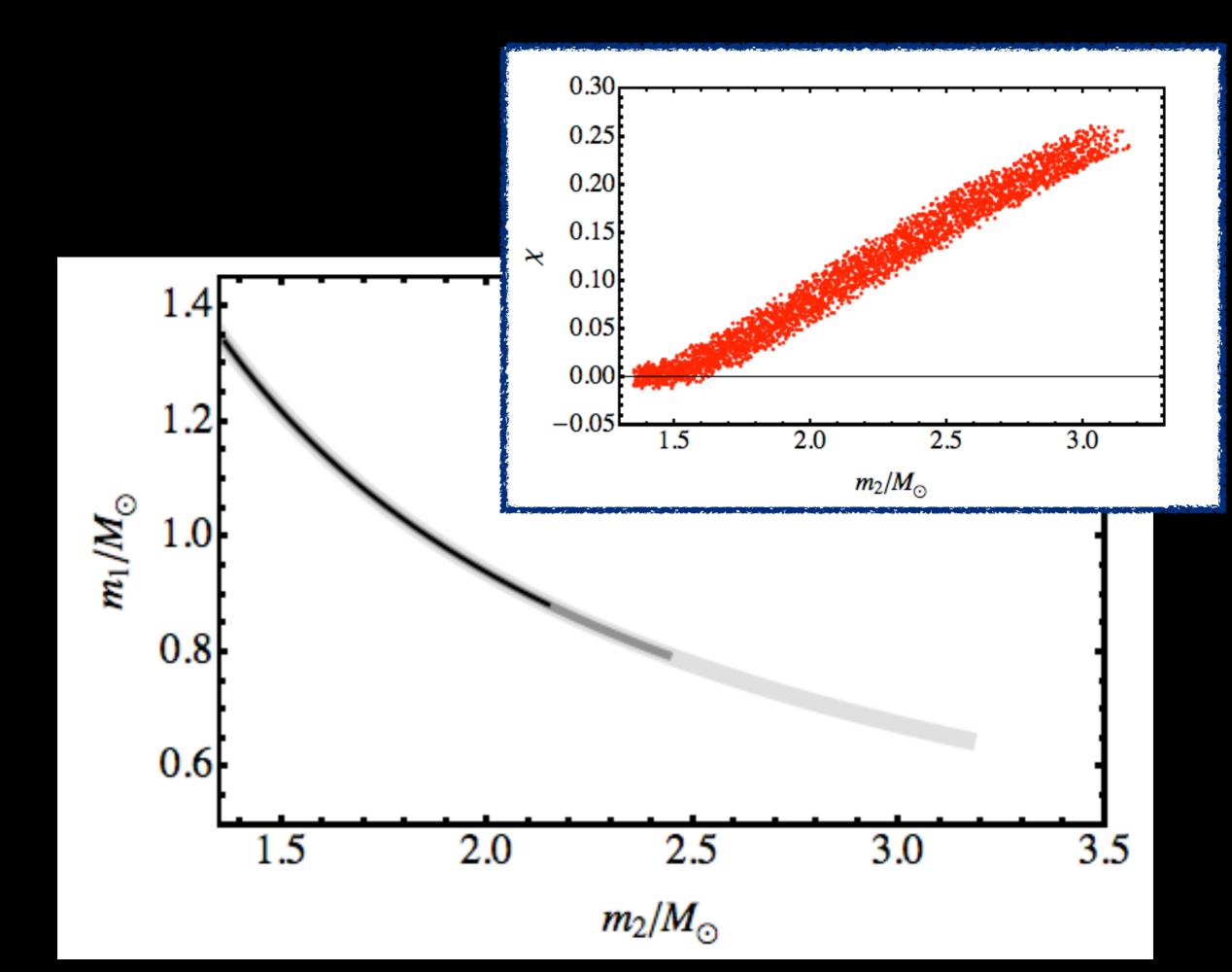






Aligned spins





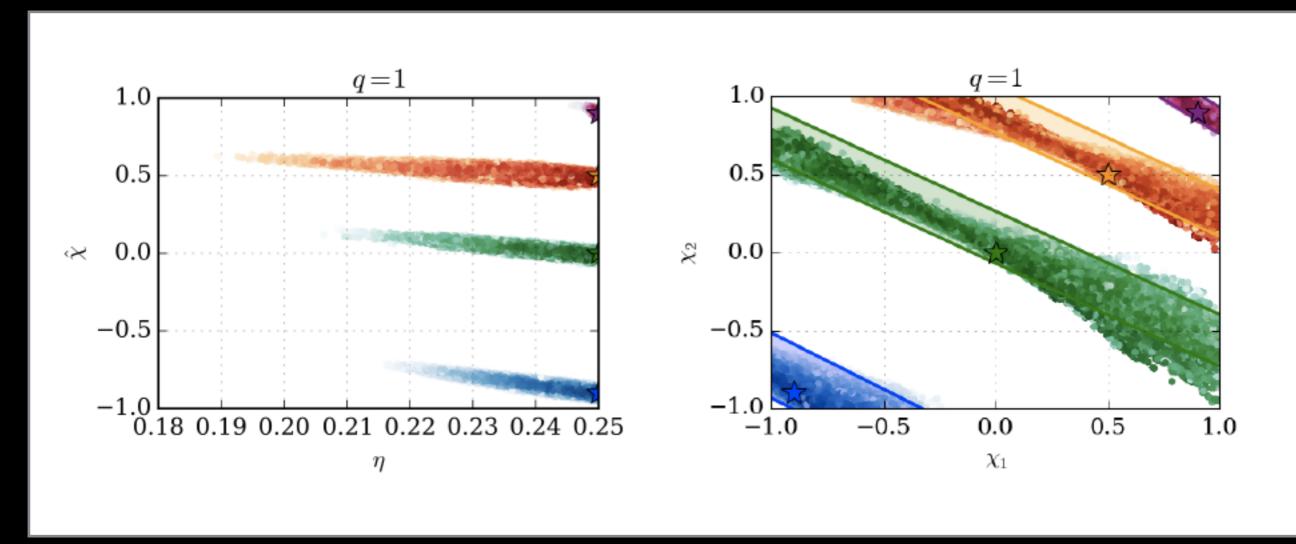
What is "x"?

 χ is a weighted <u>sum</u> of the two spins

 χ is the dominant spin effect on the phasing

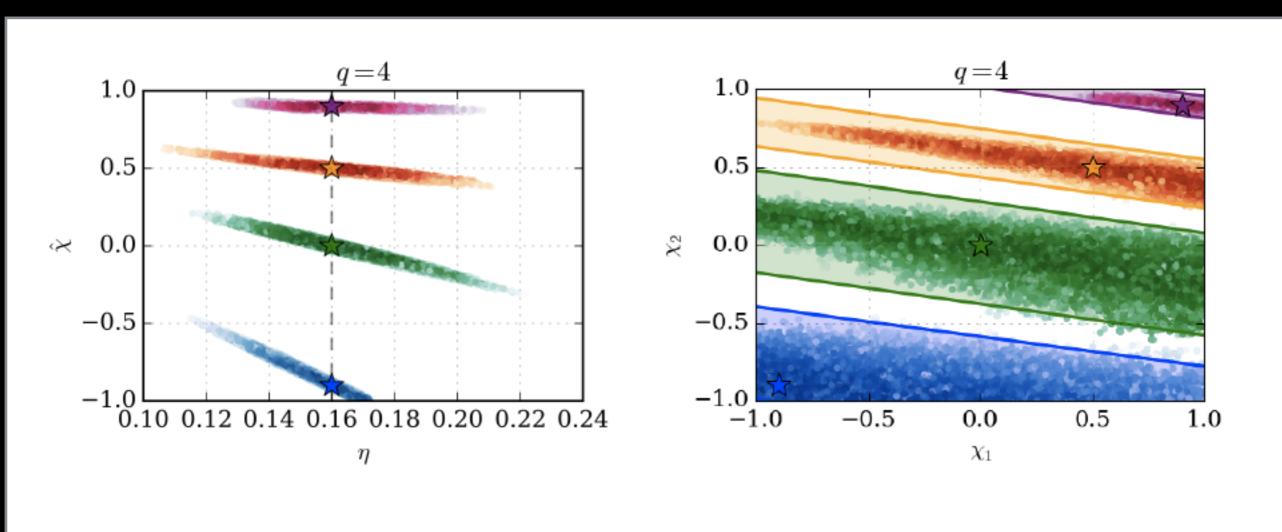
The individual spins have only a weak effect

(50-solar-mass, equal spins)

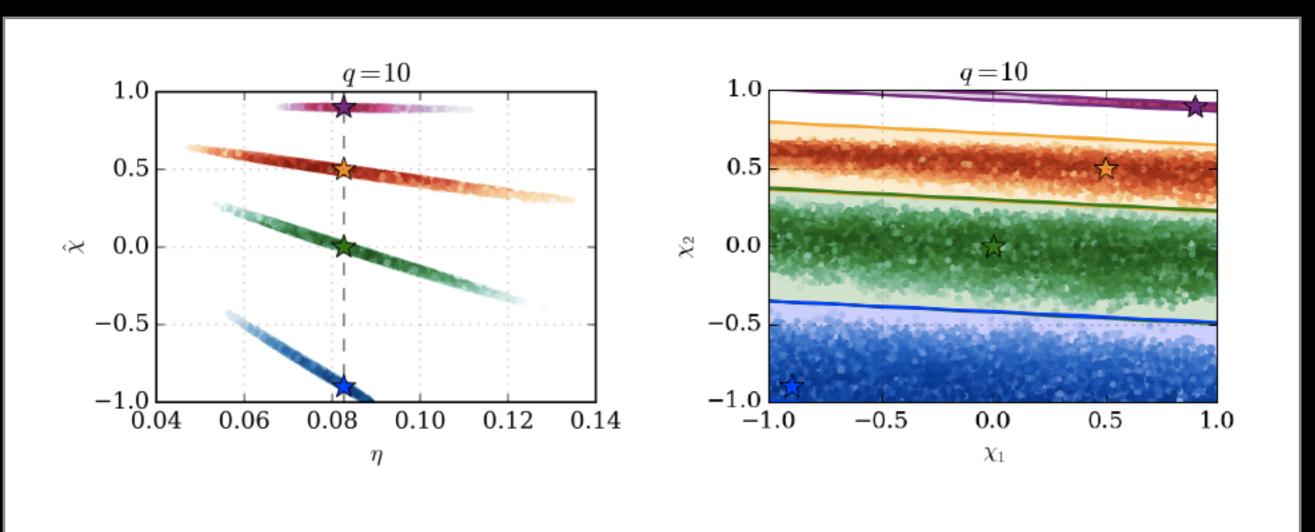


[Puerrer, Hannam, Ohme (2015, to appear)]

(50-solar-mass, equal spins)

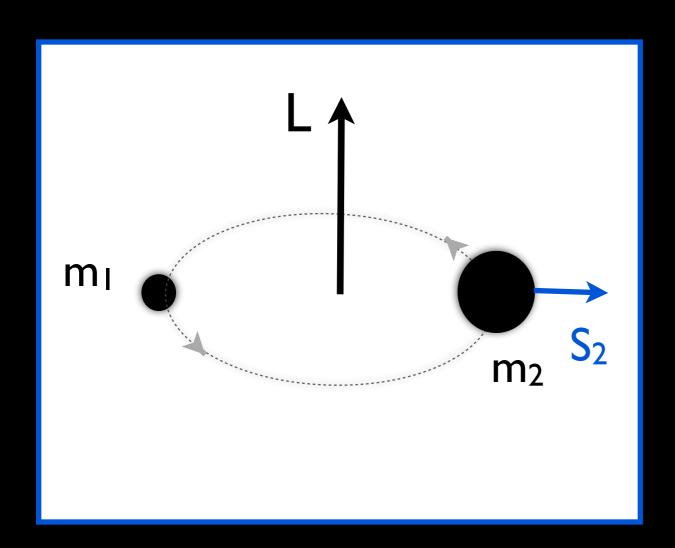


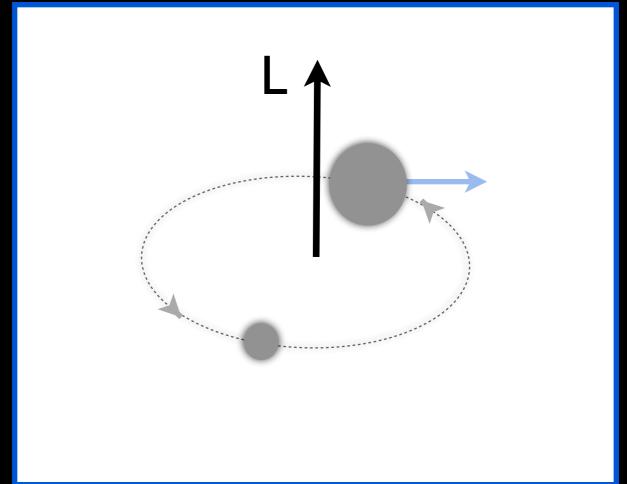
(50-solar-mass, equal spins)



[Puerrer, Hannam, Ohme, 2015 (to appear)]

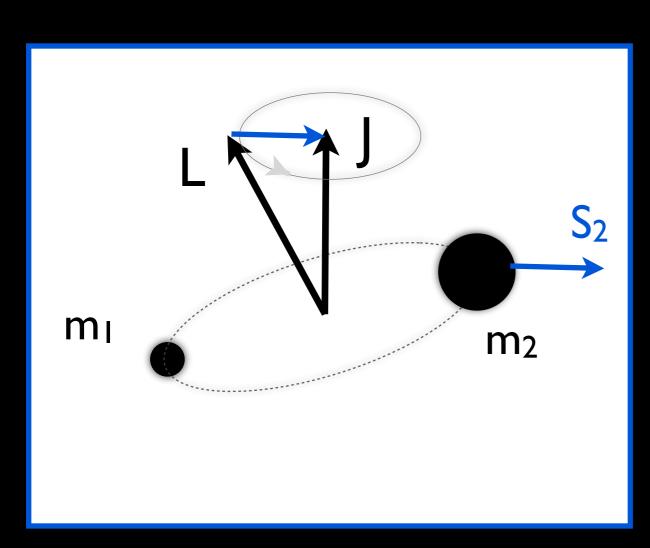
Orbital precession

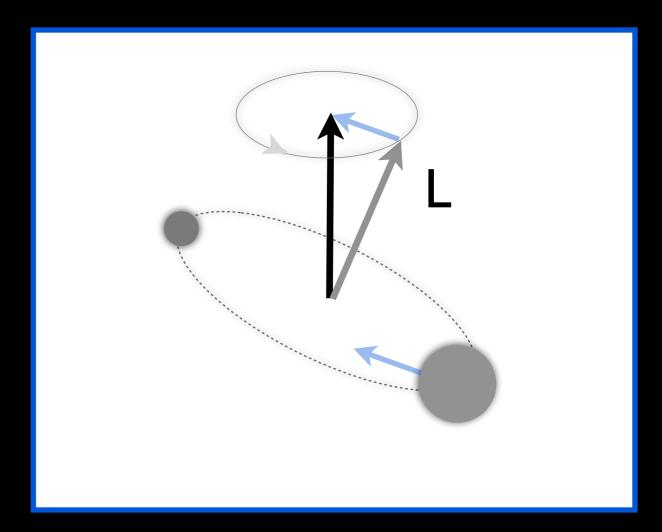




Newtonian gravity: L, S₁, S₂ remain fixed

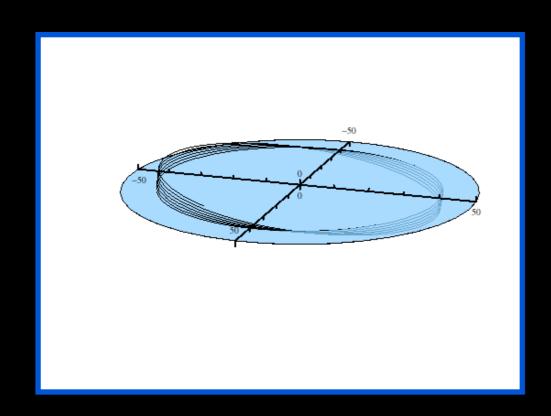
Orbital precession

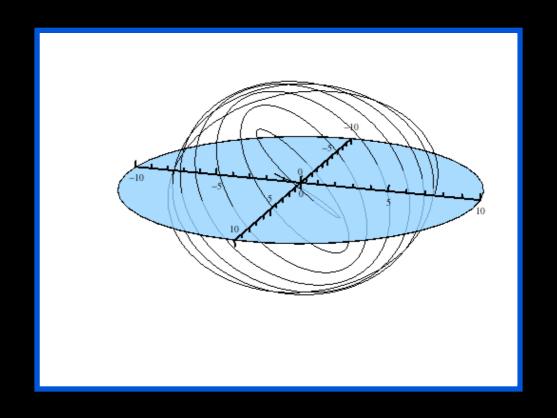




General relativity (L, S₁, S₂) precess around J

Precessional dynamics

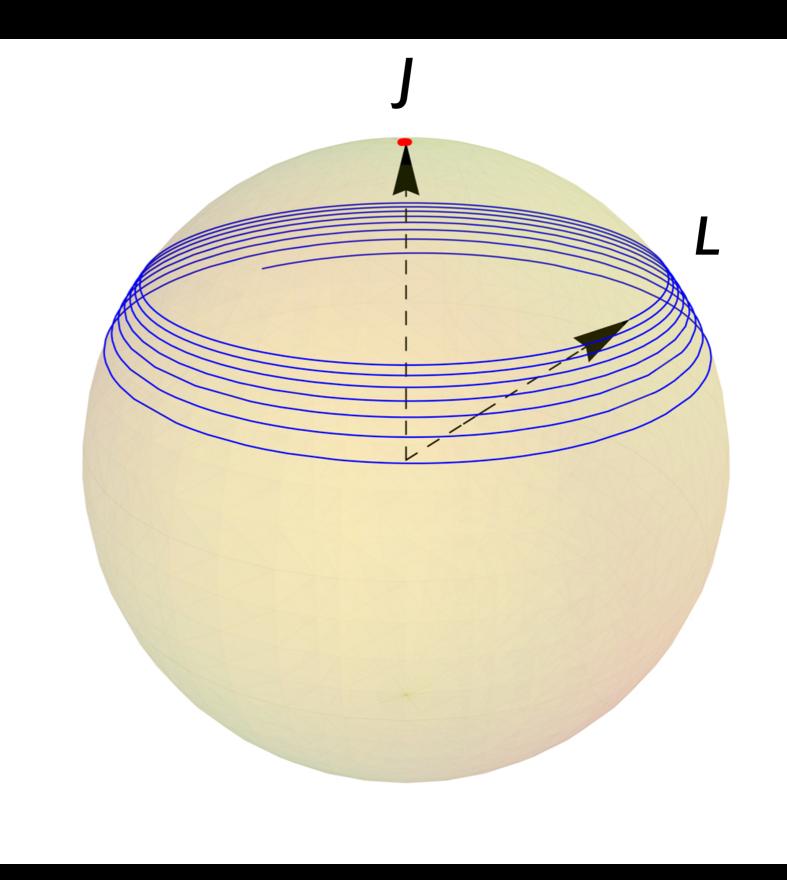




Large separation

Merger

Example: $q=3, |S_2| = 0.75$ (in plane)



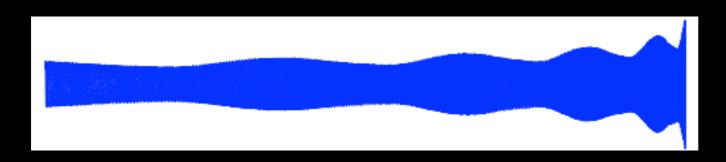
Orientation dependence

q=3, $|S_2| = 0.75$ (in plane)

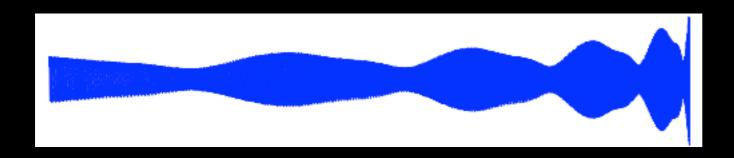
Orientation dependence

q=3, $|S_2| = 0.75$ (in plane)

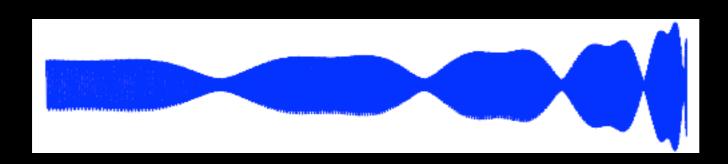
Observer aligned with J



Observer inclined $\pi/6$ to J



Observer inclined $\pi/3$ to J



Observer inclined $\pi/2$ to J

Aside: modelling precession

```
Precessing waveform =

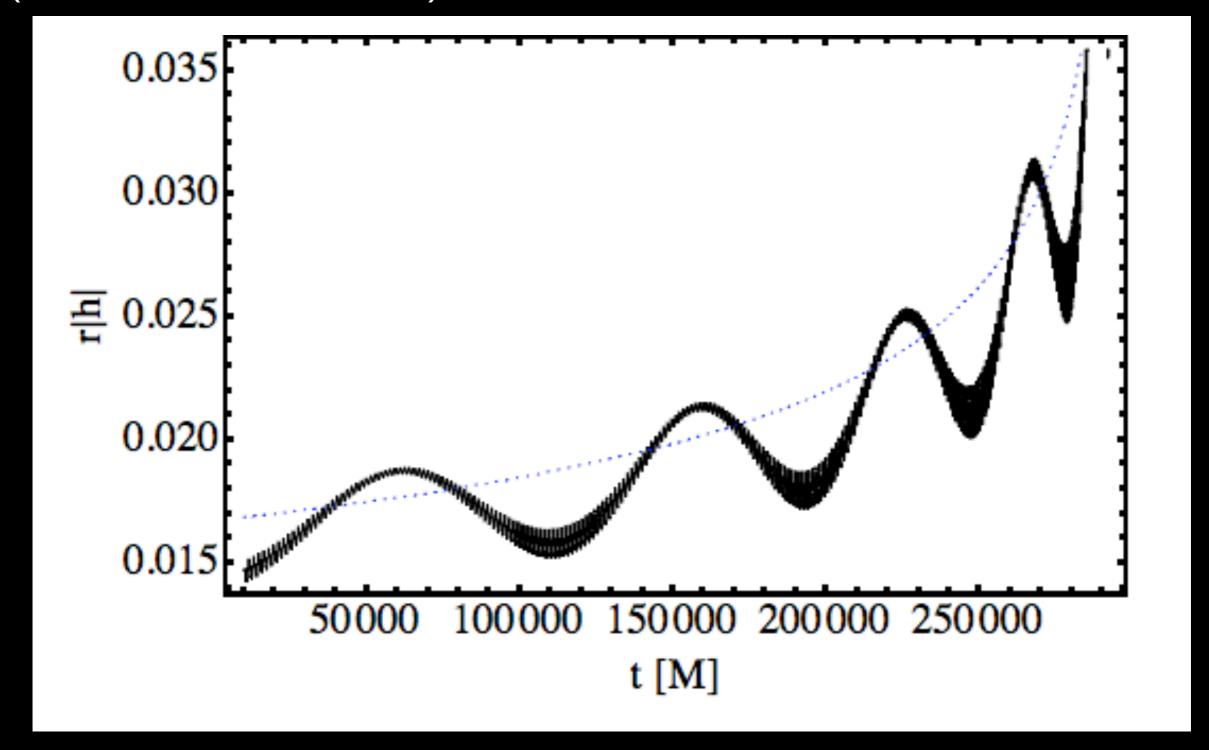
(non-precessing waveform)

x (time dependent rotation)
```

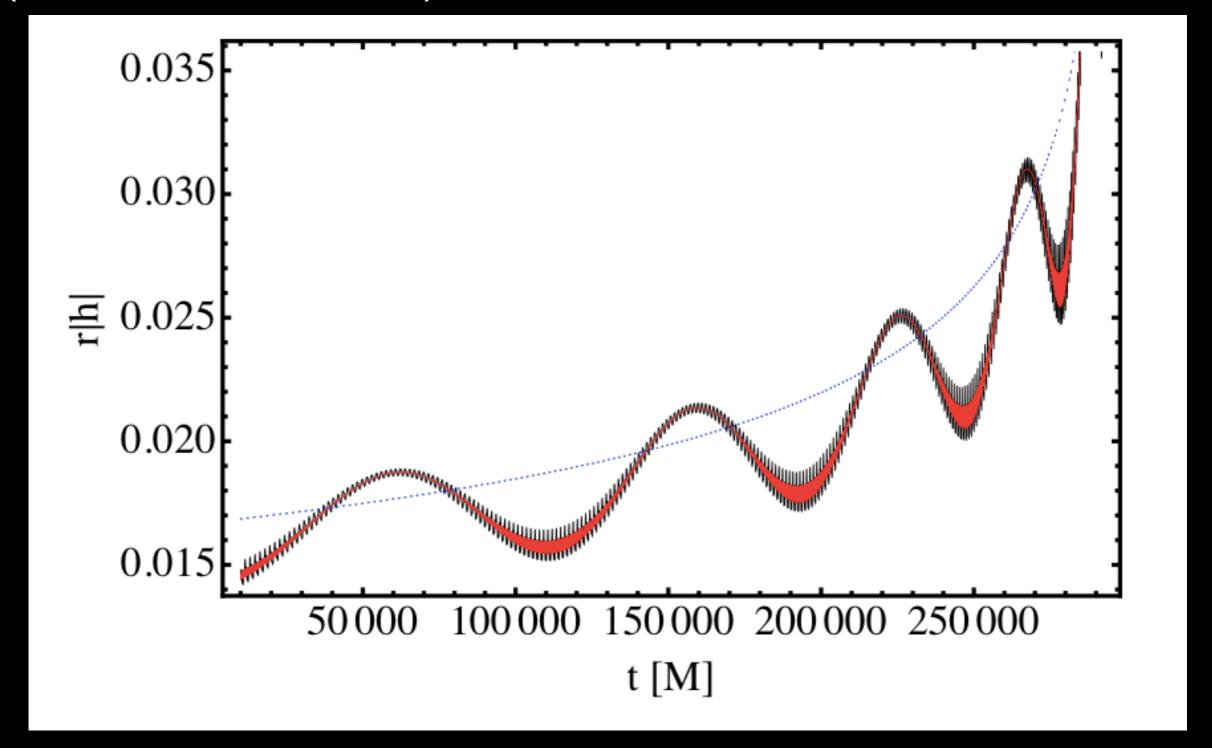
(Inclination 2.8 rad)



(Inclination 2.8 rad)



(Inclination 2.8 rad)



Aside: modelling precession

```
Precessing waveform =

(non-precessing waveform)

x (time dependent rotation)
```

Accurate non-precessing models are crucial

(See next talk by Sascha Husa)

For non-precessing binaries we used only one spin parameter

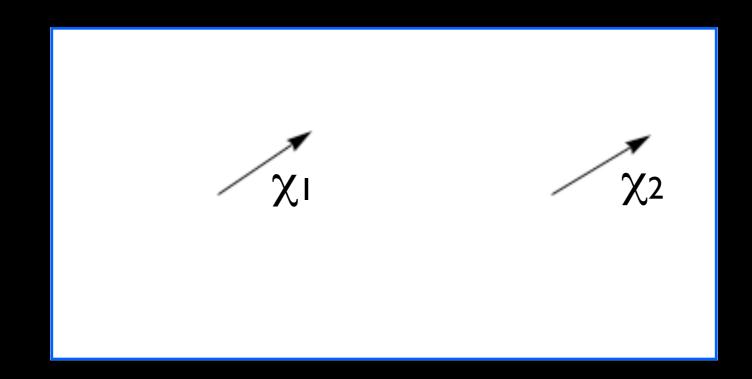
Can we use the same trick for precession?

i.e., replace
the four in-plane spin components
with one "precession spin"?

A precession parameter

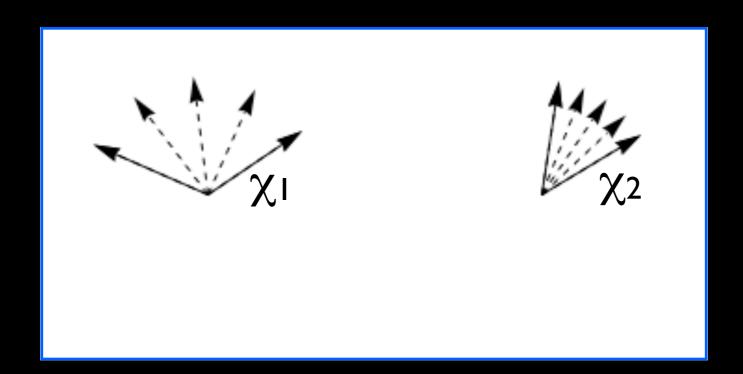
- Consider one spinning BH
- spin rotates in the plane during evolution
- Precession effects dominated by in-plane spin magnitude!

Double spins?



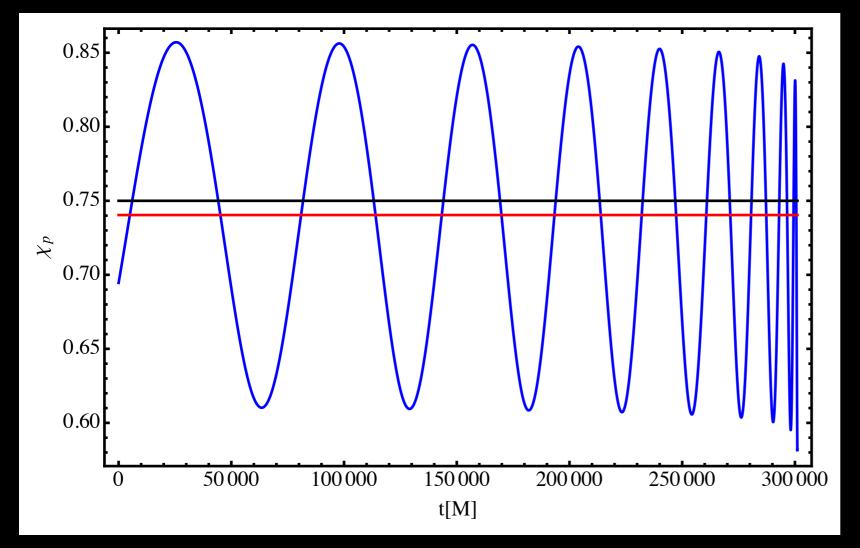
Double spins?

- Spins rotate at different rates
- Consider only the average spin in the plane, " χ_p "!



Double spins?

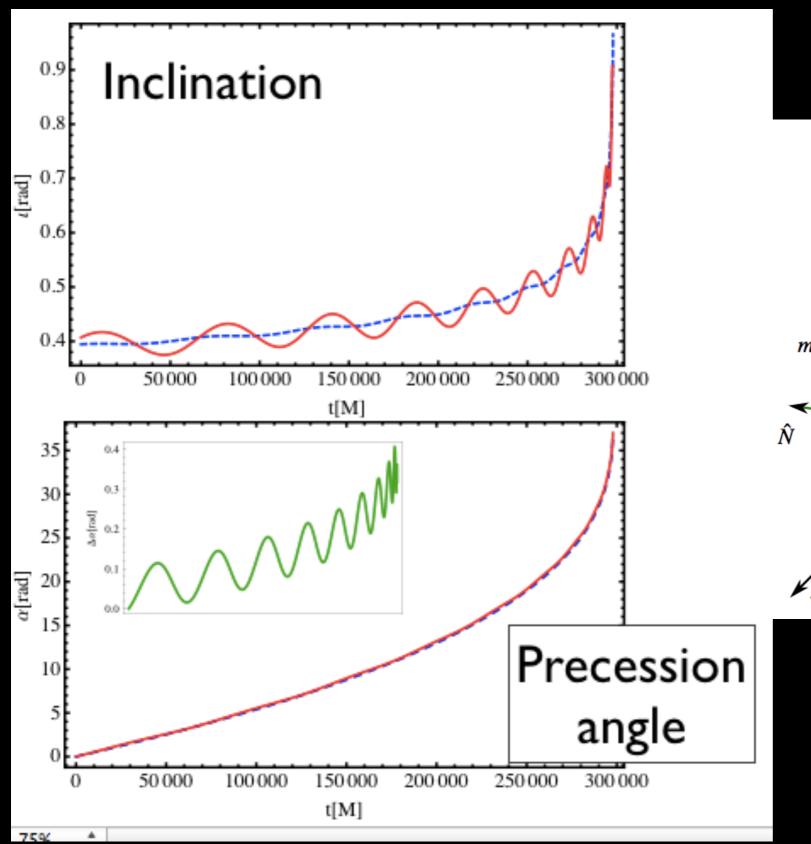
- Spins rotate at different rates
- Consider only the average spin in the plane, " χ_p "!

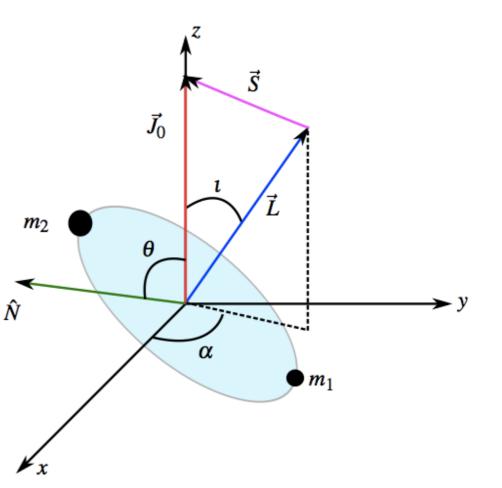


$$q=3$$
,
 $\chi_1=(-0.2,-0.4,0.3)$
 $\chi_2=(0.747,0.045,0.1)$

$$\chi_{\rm p} = 0.75$$

Compare precession angles





[Schmidt, Ohme, Hannam (2015)]

Summary

- Non-precessing-binary inspiral dominated by mass ratio and "effective spin", χ .
- Precession (approximately) decouples from nonprecessing effects.
- Precession effects parametrized also by "effective precession spin", χ_p .

- Current inspiral-merger-ringdown waveforms exploit these degeneracies and simplifications.
- How well do these work through merger? Stay tuned...