The underlying simplicity of precessing black-hole binaries

Mark Hannam Cardiff University

Texas Symposium December 16, 2015 Geneva

Masses: m_1 , m_2 Spins: S_1 , S_2

(8 parameters)

useful combinations:

$$M = m_1 + m_2$$

$$q = m_2 / m_1$$

$$\eta = m_1 m_2 / M^2$$

$$\chi = S/m^2$$

Nonspinning black holes

(Mass ratio 1:4, $\eta = 0.16$)

Nonspinning black holes

Amplitude:

Optimally oriented (face on)

Edge on

Signal shape is independent of orientation

Key information is in the phasing

Mass measurements

Aligned spins

Aligned spins

What is "x"?

 χ is a weighted <u>sum</u> of the two spins

 χ is the dominant spin effect on the phasing

The individual spins have only a weak effect

(50-solar-mass, equal spins)

[Puerrer, Hannam, Ohme (2015, to appear)]

(50-solar-mass, equal spins)

(50-solar-mass, equal spins)

[Puerrer, Hannam, Ohme, 2015 (to appear)]

Orbital precession

Newtonian gravity: L, S₁, S₂ remain fixed

Orbital precession

General relativity (L, S₁, S₂) precess around J

Precessional dynamics

Large separation

Merger

Example: $q=3, |S_2| = 0.75$ (in plane)

Orientation dependence

q=3, $|S_2| = 0.75$ (in plane)

Orientation dependence

q=3, $|S_2| = 0.75$ (in plane)

Observer aligned with J

Observer inclined $\pi/6$ to J

Observer inclined $\pi/3$ to J

Observer inclined $\pi/2$ to J

Aside: modelling precession

```
Precessing waveform =

(non-precessing waveform)

x (time dependent rotation)
```

(Inclination 2.8 rad)

(Inclination 2.8 rad)

(Inclination 2.8 rad)

Aside: modelling precession

```
Precessing waveform =

(non-precessing waveform)

x (time dependent rotation)
```

Accurate non-precessing models are crucial

(See next talk by Sascha Husa)

For non-precessing binaries we used only one spin parameter

Can we use the same trick for precession?

i.e., replace
the four in-plane spin components
with one "precession spin"?

A precession parameter

- Consider one spinning BH
- spin rotates in the plane during evolution
- Precession effects dominated by in-plane spin magnitude!

Double spins?

Double spins?

- Spins rotate at different rates
- Consider only the average spin in the plane, " χ_p "!

Double spins?

- Spins rotate at different rates
- Consider only the average spin in the plane, " χ_p "!

$$q=3$$
,
 $\chi_1=(-0.2,-0.4,0.3)$
 $\chi_2=(0.747,0.045,0.1)$

$$\chi_{\rm p} = 0.75$$

Compare precession angles

[Schmidt, Ohme, Hannam (2015)]

Summary

- Non-precessing-binary inspiral dominated by mass ratio and "effective spin", χ .
- Precession (approximately) decouples from nonprecessing effects.
- Precession effects parametrized also by "effective precession spin", χ_p .

- Current inspiral-merger-ringdown waveforms exploit these degeneracies and simplifications.
- How well do these work through merger? Stay tuned...