Relativistic chiral magnetohydrodynamics and evolution of cosmological magnetic fields

Texas Symposium on Relativistic Astrophysics

December 15, 2015

Phys. Rev. Lett. **108** (2012) 031301 [arXiv:1109.3350] (with A. Boyarsky and J. Fröhlich) Phys. Rev. Lett. **109** (2012) 111602 [arXiv:1204.3604] (with A. Boyarsky and M. Shaposhnikov)

Phys. Rev. D (2015) [arXiv:1504.04854] (with A. Boyarsky and J. Fröhlich)

Main message

- Hot (dense) plasma of relativistic particles behaves very different from a laboratory plasmas
- In fact this is a rare situation when **quantum effects** affect dynamics at **macroscopic** (arbitrarily large) scales
- What I discuss in this talk does not rely on any new physics and is true fully within the Standard Model of particle physics

Axial symmetry

Massless fermions can be left and right-chiral (left and right moving):

Dirac equation:
$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} = \begin{pmatrix} i\vec{\sigma} \cdot \nabla & \mathbf{m}^0 \\ \mathbf{m}^0 & -i\vec{\sigma} \cdot \nabla \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

where $\gamma_5 \psi_{R,L} = \pm \psi_{R,L}$ and $\gamma_5 = i \gamma_0 \gamma_1 \gamma_2 \gamma_3 = \text{diag}(-1,1)$.

- Number of left $N_L = \int d^3x \, \psi_L^\dagger \psi_L$ and right $N_R = \int d^3x \, \psi_R^\dagger \psi_R$ particles is conserved independently
- Electric charge: $Q = N_L + N_R$ gauge symmetry
- Axial charge: $Q_5 = N_L N_R$ global symmetry

Axial anomaly

■ Gauge interactions respects chirality $(D_{\mu} = \partial_{\mu} + eA_{\mu})...$

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} = \begin{pmatrix} i\vec{\sigma} \cdot (\nabla - \frac{e}{c}\vec{A}) & \mathbf{m}^{\mathbf{0}} \\ \mathbf{m}^{\mathbf{0}} & -i\vec{\sigma} \cdot (\nabla - \frac{e}{c}\vec{A}) \end{pmatrix} \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}$$

■ ... but the difference of left and right-movers is **not conserved** once the quantum corrections are taken into account — **axial anomaly**

$$\frac{dQ_5}{dt} = \frac{d(N_L - N_R)}{dt} = \int d^3\vec{x} \Big(\partial_\mu j_\mu^5 \Big) = \frac{\alpha}{\pi} \int d^3\vec{x} \vec{E} \cdot \vec{B}$$

$$\alpha \equiv \frac{e^2}{4\pi} - \text{fine-structure constant}$$

Landau levels:
$$E^2 = p_z^2 + e|B|(2n+1) + 2e\vec{B}\cdot\vec{s}$$

■ Only particles with $(\vec{B} \cdot \vec{s} < 0)$ have massless branches:

$$E = \left\{ \begin{array}{cc} -p_z & \text{left branch} & (\vec{p} \cdot \vec{s}) > 0 \\ p_z & \text{right branch} & (\vec{p} \cdot \vec{s}) < 0 \end{array} \right.$$

- Electric field $\vec{E} = E\hat{z}$ creates right particle (because $p_z(t) = p_z(0) + eEt$)
- Electric field destroys left particles
- Total number does not change
- **Difference** of left minus right appears chiral anomaly!

Axial anomaly \leftrightarrow change of helicity

If we introduce magnetic helicity

$$\mathcal{H} = \int d^3x \, \vec{A} \cdot \vec{B}$$

■ ...then

$$\int d^3x \, \vec{E} \cdot \vec{B} = -\frac{1}{2} \frac{d\mathcal{H}(t)}{dt}$$

■ Axial anomaly couples change of **left-right asymmetry** to the change of magnetic helicity:

$$\frac{d}{dt}\left((N_L - N_R) + \frac{\alpha}{\pi}\mathcal{H}\right) = 0$$

Axial anomaly at finite densities

- $lacktriangledown \mu_L$ Fermi level for left fermions
- \blacksquare μ_R Fermi level for right fermions
- Change helicity of \vec{B} -field \Rightarrow due to axial anomaly of $N_{L,R}$ changes:

$$\delta N_{L,R} = \int_{t_i}^{t_f} dt \, \dot{N}_{L,R}(t) = \mp \int dt \frac{\alpha}{\pi} \int dV \, E \cdot B$$

■ The energy:
$$\delta \mathcal{E} = \delta N_L \mu_L + \delta N_R \mu_R = \frac{\alpha(\mu_L - \mu_R)}{2\pi} \int dV \, A \cdot B$$

Nielsen & Ninomiya (1983);

Rubakov (1986)

■ Free energy of magnetic fields in plasma: $\delta \mathcal{F} = \int dV \frac{\alpha(\mu_L - \mu_R)}{2\pi} A \cdot B$

Current along the magnetic field

Along the direction of the magnetic Vilenkin'78; field \vec{B} : Redlich &

■ Left particles are moving one (1985); direction $(\vec{p} \downarrow \downarrow \vec{B})$

Rubakov'86;

Wijewardhana

Right particles are moving in the Cheianov, other direction $(\vec{p} \uparrow \uparrow \vec{B})$

Fröhlich, Alexeev'98:

■ The number of left and right Fröhlich & particles is different ($\mu_L \neq \mu_R$)

Pedrini'00,'02;

Fukushima, Kharzeev, Warringa'08

> Son & Surowka'09

$$\vec{\jmath} = \frac{e^2}{2\pi^2} (\mu_L - \mu_R) \vec{B}$$

Maxwell equations

■ So, the Maxwell equations contain current, proportional to μ_5

Kharzeev'11

$$\mu_5 = \mu_L - \mu_R$$

■ MHD turns into chiral MHD:

Vilenkin (1978)

 $\begin{array}{lll} \operatorname{curl} \vec{E} & = & -\frac{\partial \vec{B}}{\partial t} \\ \\ \operatorname{curl} \vec{B} & = & \sigma \vec{E} + \frac{2\alpha}{\pi} \mu_5 \vec{B} & \leftarrow \text{Chiral magnetic effect} \end{array}$

Fröhlich & Pedrini (2000–2001)

Joyce & Shaposhnikov (1997)

■ In addition, $\mu_5(t)$ should be allowed to become dynamical:

$$rac{d(N_L-N_R)}{dt} \propto rac{d\mu_5(t)}{dt} \propto rac{lpha}{\pi} \int d^3x \, ec{E} \cdot ec{B}$$

Boyarsky, Fröhlich, **O.R.**, PRL (2012)

$$\begin{array}{lcl} \operatorname{curl} \vec{E} &=& -\frac{\partial \vec{B}}{\partial t} \\ & \operatorname{curl} \vec{B} &=& \sigma \vec{E} + \frac{2\alpha}{\pi} \mu_5 \vec{B} & \leftarrow \text{Chiral magnetic effect} \\ & \frac{\partial \mu_5}{\partial t} & \propto & \frac{2\alpha}{\pi} \int d^3 x \, \vec{E} \cdot \vec{B} - \Gamma_{\mathrm{flip}} \mu_5 & \leftarrow \text{chirality-flipping due to finite mass of fermions} \end{array}$$

- Without *B* chirality flipping reactions drive $\mu_5 \to 0$ ($\mu_5 = \mu_0 e^{-\Gamma_{\text{flip}}t}$)
- Without μ_5 finite conductivity drives $B \to 0$ ($B_k = B_0 e^{-\frac{k^2 t}{\sigma}}$). This is called **magnetic diffusion**

Instability

■ Maxwell equations with μ_5 are unstable:

$$\frac{\partial B}{\partial t} = \begin{array}{cc} \frac{1}{\sigma} \nabla^2 B & + \frac{\alpha \mu_5}{\pi} \operatorname{curl} B \\ & \text{magnetic diffusion} & \text{instability} \end{array}$$

■ Circular polarized waves B_k^{\pm}

$$\frac{\partial B_k^{\pm}}{\partial t} = -\frac{k^2}{\sigma} B_k^{\pm} \pm \frac{\alpha \mu_5}{\pi} B_k^{\pm}$$

■ Exponential growth for $k < \frac{\alpha}{\pi}\mu_5$ (for one of the circular polarizations depending on the sign of μ_5) — generation of helical magnetic fields

$$B_{\pm} = B_0 \exp\left(-\frac{k^2}{\sigma}t \pm \frac{\alpha}{\pi}\frac{k\mu_5}{\sigma}t\right)$$

■ Consider sharply peaked at k_0 maximally helical field

$$\frac{d\mu_5}{dt} = -\rho_B \Big(\mu_5 - \bar{\mu}_5\Big) - \Gamma_{\text{Hip}}\mu_5$$

$$\frac{d\rho_B}{dt} = \frac{\rho_B}{t_\sigma} \left(\frac{\mu_5}{(\bar{\mu}_5)} - 1\right)$$

where
$$t_\sigma = rac{2\sigma}{k_0^2}$$
 and $ho_B \gg \Gamma_{\mathsf{flip}}$

lacksquare Large ho_B drives μ_5 to an **attractor solution** $ar{m{\mu_5}} = rac{2\pi k_0}{}$

$$ar{\mu}_5 = rac{2\pi k_0}{lpha}$$

■ Electric conductivity of the plasma is **finite** but **magnetic diffusion** is compensated by the presence of μ_5

O.R. with A. Boyarsky, J. Fröhlich PRL 2012 [1109.3350]

Evolution of magnetic energy density

PRL (2012) [1109.3350]

See also Tashiro et al. [1206.5549]

X-axis – log of time

- In case of two modes the helicity gets transferred from the shorter one to the longer one
- Chemical potential follows the wave-number of the mode with higher helicity $\mu = \frac{2\pi k}{\alpha}$

Evolution of helicity spectrum

Process continues while $\Gamma_B\gg\Gamma_{\mathsf{flip}}$ (recall that $\Gamma_B\propto\rho_B$)

Inverse cascade without turbulence!

Inhomogeneous dynamics of μ_5

■ Back-reaction of magnetic fields on chemical potential (via axial anomaly) will make μ_5 inhomogeneous (i.e. $\mu_5(x)$)

Boyarsky et al., [1504.04854]

$$\operatorname{curl} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\operatorname{curl} \vec{B} = \sigma \vec{E} + \frac{2\alpha}{\pi} \mu_5(\vec{x}, t) \vec{B} + \text{gradient terms?}$$

$$\frac{\partial \mu_5(\vec{x}, t)}{\partial t} + \mathcal{O}(\nabla \mu_5) \propto \frac{2\alpha}{\pi} \vec{E}(\vec{x}, t) \cdot \vec{B}(\vec{x}, t) - \Gamma_{\mathrm{flip}} \mu_5$$

- Can there by terms, proportional \vec{E} ?
- Recall: $\vec{\jmath}_{\text{CME}}$ is a \mathcal{T} -odd current, and \vec{E} is \mathcal{T} -even
- Let us introduce a pseudo-scalar field such that

$$\dot{ heta} = \mu_5$$

Pedrini (2000) (2002)

Fröhlich &

See also Nicolis, Son, Dubovsky, et al. (2011–2013)

Inhomogeneous dynamics of μ_5

lacksquare θ is \mathcal{T} -odd and therefore one can now write currents like $\nabla \theta \times \vec{E}$:

$$\vec{\jmath} = \dot{\theta}\vec{B} + \nabla\theta \times \vec{E}$$

- We started from a thermodynamical system with **only** Standard Model particles (electrons, photons).
- It turns out that if the system has chiral anomaly, it is not described by the usual magneto-hydrodynamics, rather it is described by "chiral" (or axion) hydrodynamics with an extra degree of freedom
- Axion obeys a second order in time differential equation diffusion-type equation for μ_5 , as it should be

Full system of chiral MHD equations

See talk by Jennifer Schober

Chiral anomaly :
$$rac{D\mu_5}{\partial t} = D_5\,\Delta\mu_5 + \Lambda^{-2} ec{E} {\cdot} ec{B},$$

Axion
$$\leftrightarrow$$
 chemical potential : $\frac{\partial \Theta}{\partial t} + \vec{U} \cdot \nabla \Theta = \frac{\alpha}{\pi} \mu_5$,

Maxwell's eq. with CME :
$$\nabla \times \vec{B} = \frac{4\pi}{c} \vec{J} + \frac{\vec{B}}{c} \frac{\partial \Theta}{\partial t} + (\nabla \Theta) \times \vec{E}$$
,

Bianchi identity :
$$\nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}$$
,

Ohm's law :
$$\vec{J} = \sigma \left(\vec{E} + \frac{1}{c} \vec{U} \times \vec{B} \right)$$
,

Continuity eqn. :
$$\frac{D\rho}{dt} = 0$$
,

Navier-Stokes eqn. :
$$\rho \frac{D\vec{U}}{dt} = -c_s^2 \nabla p + \vec{F} + \frac{1}{c} \vec{J} \times \vec{B}$$

$$\frac{Df}{dt} \equiv \dot{f} + \vec{U} \cdot \nabla f$$

$$\frac{d}{dt}\left((N_L - N_R) + \frac{\alpha}{\pi}\mathcal{H}\right) = 0$$

Change in magnetic helicity is coupled to the chiral chemical potential $\mu_5(t)$

Change of magnetic helicity

 \Longrightarrow

Change of $\mu_L - \mu_R$

- Change in magnetic helicity excites μ_5 and then evolution of already existing magnetic fields occurs differently
- Presence of μ_5 excites helical magnetic fields

Change of $\mu_L - \mu_R$ =

Change of magnetic helicity

Generation of magnetic fields

- The presence of **chiral imbalance** excites magnetic fields (dynamo effect)
- What is the origin of chiral imbalance?
- All charged fermions are massive
- Mass breaks left/right symmetry

$$(i\gamma^{\mu}\partial_{\mu} - \mathbf{m})\psi = \begin{pmatrix} -\mathbf{m} & i(\partial_{t} + \vec{\sigma} \cdot \vec{\nabla}) \\ i(\partial_{t} - \vec{\sigma} \cdot \vec{\nabla}) & -\mathbf{m} \end{pmatrix} \begin{pmatrix} \psi_{L} \\ \psi_{R} \end{pmatrix} = 0$$

- In the early Universe when particles have $\langle E \rangle \sim T \gg m$ can we think about μ_5 as approximately conserved? No!
- Chirality-flipping reaction: $e_L + \gamma \rightarrow e_R + \gamma$

Generation of magnetic fields

■ Although $T\gg m$ and these reactions are suppressed as $(m/T)^2$ as compared to chirality-preserving reactions after long time they will wash out μ_5 :

$$\frac{d\mu_5}{dt} = -\Gamma_f \mu_5$$

■ Starting from $T\sim 80$ TeV chirality flipping processes are in Cambell et al. equilibrium ($\Gamma_{\rm flip}(T)\gg H(T)=T^2/M_*$)

■ Although $\left(\frac{m_e}{80 \text{ TeV}}\right)^2 \sim 10^{-17}$ chirality flipping reactions are in thermal equilibrium for T < 80 TeV and drive $\mu_L - \mu_R$ to zero **exponentially fast** (suppression of at least e^{-1000} over one Hubble time)

Generation of magnetic fields

■ If a **source** creates an asymmetry in a left sector \Rightarrow its transition to a right sector is not immediate $(e^{-\Gamma_{\text{flip}}t})$ but instead can be long and be accompanied by the generation of magnetic fields (after which the whole system slowly relaxes to the expected minimum as $1/t^a$)

Summary

- System with chiral anomaly when put at non-zero temperature/finite density necessarily contains an effective degree of freedom that couples to the change of magnetic helicity
- This additional IR degree of freedom is the difference of chemical potentials of left and right particles
- If such a degree of freedom gets excited this leads to an instability and exponential growth of the helical magnetic field. This instability is always present, however time of development may be long
- Evolution of relativistic systems with magnetic fields are not described by the standard MHD equations (as was previously believed) but rather by chiral MHD

Thank you for your attention!

MORE REALISTIC ANALYSIS?

- LOCAL $\mu_5(t,x)$
- VELOCITIES

Analysis of non-linear equations

■ The non-linear system of equations:

$$\begin{cases} \operatorname{curl} \vec{B} = \sigma \vec{E} + \frac{\alpha}{\pi} \Big(\dot{\theta}_5 \vec{B} + \nabla \theta_5 \times \vec{E} \Big) \\ \Lambda^2 \ddot{\theta_5} + \operatorname{gradient terms} = \frac{2\alpha}{\pi} \vec{E} \cdot \vec{B} + \operatorname{chirality flip}, \\ \vec{B} \cdot \nabla \dot{\theta}_5 = 0, \\ \mu_5 = \dot{\theta}_5 \end{cases}$$

- Tracking solution?
- Take $\vec{B}(x) = B(t) (\sin(kz), \cos(kz), 0)$. In this case $\vec{E} \cdot \vec{B}$ is constant in space
- \blacksquare $\Rightarrow \mu_5 = \dot{\theta}_5$ depends **on time only**. The gradient terms are not important. But the equation is still non-linear!

$$\vec{B}(x) = B(t) (\sin(kz), \cos(kz), 0)$$

Boyarsky, Fröhlich, Ruchayskiy [1504.04854]

■ The solution at any time is given by

$$\begin{cases} \text{amplitude } B(t) = \frac{C_1}{\sqrt{1+C_2\exp\left(\frac{2(k^2-\gamma^2)}{\sigma}t\right)}},\\ \mu_5(t) = \mu_5^0 - \frac{\alpha}{2\pi}\frac{B^2(t)-B_0^2}{k\Lambda^2} \end{cases}$$

where
$$\gamma^2 = \frac{\alpha}{\pi} k \mu_5^0 + \frac{\alpha^2 B_0^2}{2\pi^2 \Lambda^2}$$

■ If $\gamma > k$ we get a non-trivial static solution at $t \to \infty$

$$B_{\infty}^{2} = B_{0}^{2} \left[1 + \left(\frac{2k^{2}}{\beta_{0}^{2}} \right) \left(\frac{\mu_{5}^{0}}{\mu_{5}^{\infty}} - 1 \right) \right]$$

where
$$\mu_5^{\infty} \equiv \mu_5(t \to \infty) = \frac{\pi k}{\alpha}$$

Analysis of non-linear equations

- Do we see energy transfer from short scale to longer scales? Yes
- Linearized analysis: perturb force-free configuration with the wavenumber k and the amplitude B_{∞} ($\vec{B} = B_{\infty}(\sin(kz), \cos(kz), 0)$) by longer mode q
- lacktriangle Homogeneous case: every q < k is unstable (energy transfer to longer wavelength)
- Inhomogeneous case: unstable q:

$$\frac{k - \sqrt{k^2 - 4\beta^2}}{2} < q < \frac{k + \sqrt{k^2 - 4\beta^2}}{2}, \qquad \text{where } \beta^2 = \frac{\alpha^2 B^2}{\pi^2 T^2}$$

■ ⇒ Longer wavelength modes start to grow exponentially!

Evolution of chemical potential

Process continues while $ho_B\gg \Gamma_{\mathsf{flip}}$

Evolution of chemical potential

Continuous initial spectrum with $\mathcal{H}_k \propto k$ and fraction of magnetic energy density $\mathbf{5} \times \mathbf{10}^{-5}$ (blue) or $\mathbf{5} \times \mathbf{10}^{-4}$ (green). Red – evolution without flip