
Relativistic chiral magnetohydrodynamics
and evolution of cosmological magnetic

fields
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Main message

� Hot (dense) plasma of relativistic particles behaves very different
from a laboratory plasmas

� In fact this is a rare situation when quantum effects affect
dynamics at macroscopic (arbitrarily large) scales

� What I discuss in this talk does not rely on any new physics and
is true fully within the Standard Model of particle physics
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Axial symmetry

� Massless fermions can be left and right-chiral (left and right
moving):

Dirac equation: i~
∂

∂t

(
ψL
ψR

)
=

(
i~σ · ∇ ��

�*0m

��
�*0m −i~σ · ∇

)(
ψL
ψR

)
where γ5ψR,L = ±ψR,L and γ5 = iγ0γ1γ2γ3 = diag(−1, 1).

� Number of left NL =
∫
d3xψ†LψL and right NR =

∫
d3xψ†RψR

particles is conserved independently

� Electric charge: Q = NL +NR – gauge symmetry

� Axial charge: Q5 = NL −NR – global symmetry
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Axial anomaly

� Gauge interactions respects chirality (Dµ = ∂µ + eAµ). . .

i~
∂

∂t

(
ψL
ψR

)
=

(
i~σ · (∇− e

c
~A) ��

�*0m

�
��*0m −i~σ · (∇− e

c
~A)

)(
ψL
ψR

)

� . . . but the difference of left and right-movers is not conserved once
the quantum corrections are taken into account — axial anomaly

dQ5

dt
=
d(NL −NR)

dt
=

∫
d3~x
(
∂µj

5
µ

)
=
α

π

∫
d3 ~x~E · ~B

α ≡ e2

4π – fine-structure constant

〈jµ5 〉
Aµ

Aν
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QM interpretation: spectral flow

Landau levels: E2 = p2
z + e|B|(2n+ 1) + 2e ~B · ~s

G.E. Volovik,
cond-
mat/9802091

� Only particles with ( ~B · ~s < 0) have
massless branches:

E =

{
−pz left branch (~p · ~s) > 0

pz right branch (~p · ~s) < 0

� Electric field ~E = Eẑ creates right
particle (because pz(t) = pz(0) + eEt)

� Electric field destroys left particles

� Total number does not change

� Difference of left minus right
appears – chiral anomaly!

Right particle with electric charge eR
 in magnetic field B 

Landau energy levels

Asymmetric branch on n=0 Landau level

E(pz)= cpz 

 
Ε(pz)

pz

Particles creation from vacuum

In applied electric field E :

 pz = eRE

 Particles from negative energy levels of Dirac vacuum 

are pushed into positive energy levels of matter

n = (1  / 4π2) [(eR)2 - (eL)
2 ] E•B

e R

n=0

n=-1

n=-2

n=1

n=2

•       

•       

						  Chiral anomaly

left particles can 

compensate the effect 

if

left-right symmetry

is exact
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Axial anomaly ↔ change of helicity

� If we introduce magnetic helicity

H =

∫
d3x ~A · ~B

� . . . then ∫
d3x ~E · ~B = −1

2

dH(t)

dt

� Axial anomaly couples change of left-right asymmetry to the
change of magnetic helicity:

d

dt

(
(NL −NR) +

α

π
H
)

= 0
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Axial anomaly at finite densities

Heli
al ~B 6= 0

µL
µR

� µL – Fermi level for left
fermions

� µR – Fermi level for right
fermions

� Change helicity of ~B-field ⇒ due to axial anomaly ofNL,R changes:

δNL,R =

∫ tf

ti

dt ṄL,R(t) = ∓
∫
dt
α

π

∫
dV E ·B

Nielsen &
Ninomiya
(1983);

Rubakov
(1986)

� The energy: δE = δNLµL + δNRµR =
α(µL − µR)

2π

∫
dV A ·B

� Free energy of magnetic fields in plasma: δF =
∫
dV α(µL−µR)

2π A ·B
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Current along the magnetic field
Vilenkin’78;

Redlich &
Wijewardhana
(1985);

Rubakov’86;

Cheianov,
Fröhlich,
Alexeev’98;

Fröhlich &
Pedrini’00,’02;

Fukushima,
Kharzeev,
Warringa’08

Son &
Surowka’09

pz

E(pz) ψRψL

µR

µL

Along the direction of the magnetic
field ~B:

� Left particles are moving one
direction (~p ↓↓ ~B)

� Right particles are moving in the
other direction (~p ↑↑ ~B)

� The number of left and right
particles is different (µL 6= µR)

� ⇒ The current proportional to
the disbalance flows:

~ =
e2

2π2
(µL − µR) ~B
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Maxwell equations

� So, the Maxwell equations contain current, proportional to µ5 Kharzeev’11

µ5 = µL − µR

� MHD turns into chiral MHD: Vilenkin
(1978)

Fröhlich &
Pedrini
(2000–2001)

Joyce &
Shaposhnikov
(1997)

curl ~E = −∂
~B

∂t

curl ~B = σ ~E +
2α

π
µ5
~B ←Chiral magnetic effect

� In addition, µ5(t) should be allowed to become dynamical:

d(NL −NR)

dt
∝
dµ5(t)

dt
∝
α

π

∫
d

3
x ~E · ~B
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Dynamics of µ5

Boyarsky,
Fröhlich, O.R.,
PRL (2012)

curl ~E = −∂
~B

∂t

curl ~B = σ ~E +
2α

π
µ5
~B ←Chiral magnetic effect

∂µ5

∂t
∝ 2α

π

∫
d3x ~E · ~B − Γflipµ5 ←chirality-flipping due to finite mass of fermions

� Without B chirality flipping reactions drive µ5 → 0 (µ5 = µ0e
−Γflipt)

� Without µ5 finite conductivity drives B → 0 (Bk = B0e
−k

2t
σ ). This is

called magnetic diffusion
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Instability

� Maxwell equations with µ5 are unstable:

∂B

∂t
=

1

σ
∇2B +

αµ5

π
curlB

magnetic diffusion instability

� Circular polarized waves B±k

∂B±k
∂t

= −k
2

σ
B±k ± αµ5

π
B±k

� Exponential growth for k <
α

π
µ5 (for one of the circular polarizations

depending on the sign of µ5) — generation of helical magnetic fields

B± = B0 exp
(
−k

2

σ
t± α

π

kµ5

σ
t
)
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Attractor solution

� Consider sharply peaked at k0 maximally helical field

dµ5

dt
= −ρB

(
µ5 − µ̄5

)
− ��

���
�XXXXXXΓflipµ5

dρB
dt

=
ρB
tσ

(
µ5

(µ̄5)
− 1

)
where tσ = 2σ

k2
0

and ρB � Γflip k0

ρB(k)

� Large ρB drives µ5 to an attractor solution µ̄5 =
2πk0

α
O.R. with
A. Boyarsky,
J. Fröhlich
PRL 2012
[1109.3350]� Electric conductivity of the plasma is finite but magnetic diffusion

is compensated by the presence of µ5
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Evolution of magnetic energy density
PRL (2012)
[1109.3350]
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Two modes

kshort

ρB(k)

klong
� In case of two modes the helicity

gets transferred from the shorter
one to the longer one

� Chemical potential follows the
wave-number of the mode with
higher helicity µ = 2πk

α
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Evolution of helicity spectrum
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Process continues while ΓB � Γflip (recall that ΓB ∝ ρB)
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Evolution of helicity spectrum
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Inhomogeneous dynamics of µ5

� Back-reaction of magnetic fields on chemical potential (via axial
anomaly) will make µ5 inhomogeneous (i.e. µ5(x)) Boyarsky et

al.,
[1504.04854]

curl ~E = −∂
~B

∂t

curl ~B = σ ~E +
2α

π
µ5(~x, t) ~B + gradient terms?

∂µ5(~x, t)

∂t
+O(∇µ5) ∝ 2α

π
~E(~x, t) · ~B(~x, t)− Γflipµ5

� Can there by terms, proportional ~E?

� Recall: ~CME is a T -odd current, and ~E is T -even
Fröhlich &
Pedrini (2000);
(2002)

� Let us introduce a pseudo-scalar field such that θ̇ = µ5

See also Nicolis, Son, Dubovsky, et al. (2011–2013)
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Inhomogeneous dynamics of µ5

� θ is T -odd and therefore one can now write currents like ∇θ × ~E:

~ = θ̇ ~B +∇θ × ~E

� We started from a thermodynamical system with only Standard
Model particles (electrons, photons).

� It turns out that if the system has chiral anomaly, it is not described
by the usual magneto-hydrodynamics, rather it is described by
“chiral” (or axion) hydrodynamics with an extra degree of freedom

� Axion obeys a second order in time differential equation –
diffusion-type equation for µ5, as it should be
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Full system of chiral MHD equations
See talk by
Jennifer
Schober

Chiral anomaly :
Dµ5

∂t
= D5 ∆µ5 + Λ

−2 ~E· ~B,

Axion↔ chemical potential :
∂Θ

∂t
+ ~U·∇Θ =

α

π
µ5,

Maxwell’s eq. with CME : ∇× ~B =
4π

c
~J +

~B

c

∂Θ

∂t
+ (∇Θ)×~E,

Bianchi identity : ∇×~E = −
1

c

∂ ~B

∂t
,

Ohm’s law : ~J = σ

(
~E +

1

c
~U× ~B

)
,

Continuity eqn. :
Dρ

dt
= 0,

Navier-Stokes eqn. : ρ
D~U

dt
= −c2

s∇p+ ~F +
1

c
~J × ~B

Df
dt ≡ ḟ + ~U · ∇f
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In short

d

dt

(
(NL −NR) +

α

π
H
)

= 0

Change in magnetic helicity is coupled to the chiral chemical
potential µ5(t)

�
�

�
�Change of magnetic helicity =⇒

�
�

�
�Change of µL − µR

– Change in magnetic helicity excites µ5 and then evolution of
already existing magnetic fields occurs differently

– Presence of µ5 excites helical magnetic fields

�
�

�
�Change of µL − µR =⇒

�
�

�
�Change of magnetic helicity

Oleg RuchayskiyGENERATION AND EVOLUTION OF COSMOLOGICAL MAGNETIC FIELDS 19



Generation of magnetic fields

� The presence of chiral imbalance excites magnetic fields (dynamo
effect)

� What is the origin of chiral imbalance?

� All charged fermions are massive

� Mass breaks left/right symmetry

(iγµ∂µ −m)ψ =

(
−m i(∂t + ~σ · ~∇)

i(∂t − ~σ · ~∇) −m

)(
ψL
ψR

)
= 0

� In the early Universe when particles have 〈E〉 ∼ T � m – can we
think about µ5 as approximately conserved? – No!

� Chirality-flipping reaction: eL + γ → eR + γ
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Generation of magnetic fields

� Although T � m and these reactions are suppressed as (m/T )2 as
compared to chirality-preserving reactions after long time they will
wash out µ5:

dµ5

dt
= −Γfµ5

� Starting from T ∼ 80 TeV chirality flipping processes are in Cambell et al.
(1992)equilibrium (Γflip(T )� H(T ) = T 2/M∗)

� Although
(

me
80 TeV

)2 ∼ 10−17 chirality flipping reactions are in thermal
equilibrium for T < 80 TeV and drive µL−µR to zero exponentially
fast (suppression of at least e−1000 over one Hubble time)
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Generation of magnetic fields
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• ΓW ∝ G2
FT

5
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3T

)2

� If a source creates an asymmetry in a left sector ⇒ its transition to
a right sector is not immediate (e−Γflipt) but instead can be long and
be accompanied by the generation of magnetic fields (after which the
whole system slowly relaxes to the expected minimum as 1/ta)
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Summary

� System with chiral anomaly when put at non-zero temperature/finite
density necessarily contains an effective degree of freedom that
couples to the change of magnetic helicity

� This additional IR degree of freedom is the difference of chemical
potentials of left and right particles

� If such a degree of freedom gets excited – this leads to an instability
and exponential growth of the helical magnetic field. This instability
is always present, however time of development may be long

� Evolution of relativistic systems with magnetic fields are not
described by the standard MHD equations (as was previously believed)
but rather by chiral MHD
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Thank you for your
attention!
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MORE REALISTIC ANALYSIS?
– LOCAL µ5(t, x)

– VELOCITIES
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Analysis of non-linear equations

� The non-linear system of equations:

curl ~B = σ ~E +
α

π

(
θ̇5
~B +∇θ5 × ~E

)
Λ2θ̈5 + gradient terms =

2α

π
~E · ~B + chirality flip,

~B · ∇θ̇5 = 0,

µ5 =θ̇5

� Tracking solution?

� Take ~B(x) = B(t)
(
sin(kz), cos(kz), 0

)
. In this case ~E · ~B is constant

in space

� ⇒ µ5 = θ̇5 depends on time only. The gradient terms are not
important. But the equation is still non-linear!
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Analysis of non-linear equations
~B(x) = B(t)

(
sin(kz), cos(kz), 0

)
Boyarsky,
Fröhlich,
Ruchayskiy
[1504.04854]� The solution at any time is given by

amplitude B(t) =
C1√

1 + C2 exp
(

2(k2−γ2)
σ t

),
µ5(t) =µ0

5 −
α

2π

B2(t)−B2
0

kΛ2

where γ2 = α
πkµ

0
5 +

α2B2
0

2π2Λ2.

� If γ > k we get a non-trivial static solution at t→∞

B2
∞ = B2

0

[
1 +

(
2k2

β2
0

)(
µ0

5

µ∞5
− 1

)]
where µ∞5 ≡ µ5(t→∞) = πk

α
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Analysis of non-linear equations

� Do we see energy transfer from short scale to longer scales? —
Yes

� Linearized analysis: perturb force-free configuration with the
wavenumber k and the amplitude B∞ ( ~B = B∞(sin(kz), cos(kz), 0))
by longer mode q

� Homogeneous case: every q < k is unstable (energy transfer to
longer wavelength) Boyarsky,

Fröhlich,
Ruchayskiy
[1504.04854]� Inhomogeneous case: unstable q:

k −
√
k2 − 4β2

2
< q <

k +
√
k2 − 4β2

2
, where β2 =

α2B2

π2T 2

� ⇒ Longer wavelength modes start to grow exponentially!
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Evolution of chemical potential
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Process continues while ρB � Γflip
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Evolution of chemical potential
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