Neutrino cosmic viscosity and its effect on the CMB

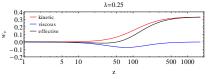
von Neumann equation

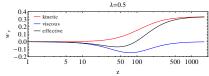
$$i(\partial_t - Hp\partial_p)\rho_{\rm m} = [\mathcal{H}_{\rm m}, \rho_{\rm m}]$$

 with the free neutrino Hamiltonian

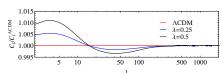
$$\mathcal{H}_{\mathrm{m}} = \sqrt{M^2 + p^2 \mathbb{I}}$$

generating an increase in entropy


$$\dot{S}_{\nu} \! = \! - \! \int \!\! d \mathbf{q} \mathrm{Tr} \left[\! \frac{\dot{\overline{\varrho}}_{\mathrm{m}}}{\mathbf{I} - \overline{\varrho}_{\mathrm{m}}} \right] \! \right]$$


 and manifesting as a viscous pressure

$$P_{\nu}=P_{k}-rac{\dot{S}_{
u}n_{a}T_{a}}{9H^{2}}u_{;\lambda}^{\lambda}$$


 we assume an increase in entropy proportional to the change of the equation of state

$$\dot{S}_{\nu} = -\lambda \dot{w}_{\nu} \ln \left[w_{\nu} \right]$$

which affects the CMB by the ISW effect

