

H.E.S.S. Observations of the LMC

Nukri Komin^{*}, C.-C. Lu, S. Ohm, M. Mayer, Matthieu Renaud, J. Vink and F. Aharonian for the H.E.S.S. Collaboration

*Wits University, Johannesburg, South Africa

What is the Large Magellanic Cloud?

- a satellite galaxy of the Milky Way
- ~10° diameter (20x full moon)
- extension: 8 kpc
- distance: 50 kpc
- inclination: 31°

High Energy Stereoscopic System

- **5** Imaging Cherenkov Telescopes
 - record Cherenkov light of air showers
- 5° field of view (CT 1–4)
- 100 GeV ... tens of TeV
- $\hfill \ \hfill \ \$
- data presented here: H.E.S.S. phase I \rightarrow only 4 telescopes

H.E.S.S. LMC Observation Campaign

- time line:
 - 2004: start with SN 1987A
 - 2009: 49 h (published 2012)
 - 2013: 210 h (this talk)
- observation conditions
 - large zenith angle (45° 52°)
 - \rightarrow energy threshold ~700 GeV
- spatial coverage:
 - roughly: 2° around N 157B
 - contour line: 2° mean camera offset
 - main targets: N 157B, SN 1987A (Tarantula nebula)
 - secondary target: N 132D

The Pulsar Wind Nebula N 157B Revisited

- 613 gamma rays, 33 σ
- confirms previous result [H.E.S.S. A&A 545, L2 (2012)]

- spectral index 2.8 ± 0.1
- no significant spectral cut-off
- $L_{1-10 \text{ TeV}}(50 \text{ kpc}) = (6.8 \pm 0.3) \ 10^{35} \text{ erg/s}$
- under-estimation of flux in 2012:
 - imperfect modelling of instrument response

The Pulsar Wind Nebula N 157B Revisited

- pulsar wind nebula powered by PSR J0537–6910 ($\dot{E} = 4.9 \ 10^{38} \ \text{erg/s}$)
- inverse Compton emission on strong infra-red fields \rightarrow bright in gamma rays
- X-ray synchrotron emission \rightarrow low magnetic field of 45 μ G
- constant injection of 11% Ė into electrons >400 GeV
- Milky Way counterpart:
 - Crab Nebula
 - $\dot{E} = 4.5 \ 10^{38} \, \text{erg/s}$
 - same model
 - 123 µG
 - 50% Ė
- \rightarrow N 157B apparently inefficient accelerator
- new Fermi results: 2nd component?

New Source Discovery

H.E.S.S.

- additional emission SW of PWN
 - 130 pc at 50 kpc
- >5 σ above spill-over
- two-source morphology favoured by 8.8σ
- position (contours) compatible with
 - shell of superbubble 30 Dor C
 - star clusters of LH 90 (·)
- not compatible with SN 1987A (^A)
- note: angular resolution does not allow conclusion on morphology

- non-thermal X-rays from shell
- \rightarrow TeV emission from shell likely
- alternative scenarios
 - SNR
 - unseen pulsars/PWN
 - background AGN

- spectral index 2.6 ± 0.2
- $L_{1-10 \text{ TeV}}(50 \text{ kpc}) = (9 \pm 2) \ 10^{34} \text{ erg/s}$
 - corrected for N 157B spill-over

N. Komin, H.E.S.S. Observations of the LMC, 28th Texas Symposium, Geneva, 14/12/2015.

hadronic scenario

- energy in protons $W_{pp} = (0.7 - 25) \times 10^{52} (n_{\rm H} / 1 \,{\rm cm}^{-3})^{-1} \,{\rm erg}_{\rm po}^{-5}$
- even for 5 supernova explosions high density needed: n_H > 20 cm⁻³
 - thermal X-rays indicate low density: n_H ~ 0.4 cm⁻³ [Bamba et al. 2004]
- Ieptonic scenario
- low magnetic field: ~15 µG
- 4 x 10⁴⁸ erg in electrons

- hadronic or leptonic: no model favoured
- but: evidence for efficient particle acceleration in a superbubble
- first unambiguous detection of a superbubble in gamma rays
- Galactic counterpart: Westerlund 1
 - emission from PWN?

N. Komin, H.E.S.S. Observations of the LMC, 28th Texas Symposium, Geneva, 14/12/2015.

The Supernova Remnant of SN 1987A

Right Ascension (J2000)

H.E.S.S. LMC Observation Campaign

N. Komin, H.E.S.S. Observations of the LMC, 28th Texas Symposium, Geneva, 14/12/2015.

The Supernova Remnant N 132D

- potential gamma ray emitter [Katz & Waxman, 2008]
- evidence for emission:
 - 4.7 σ at nominal test position
- Fermi detection at MeV/GeV

- spectral index 2.4 ± 0.3
- $L_{1-10 \text{ TeV}}(50 \text{ kpc}) = (9 \pm 2) \ 10^{34} \text{ erg/s}$

The Supernova Remnant N 132D

- X-ray features
 - strong thermal emission
 - upper limit on non-thermal emission
 - high explosion energy 6 x 10⁵¹ erg
 - pre-shock density 2.6 cm⁻³
 - age 6000 years
 - [Hughes et al. 1998]

The Supernova Remnant N 132D

hadronic scenario

- energy in protons $W_{pp} = 10^{52} (n_{\rm H}/1 {\rm cm}^{-3})^{-1} {\rm erg}$
- → efficient accelerator (17% to CR) or high post-shock density
- possible interaction with interstellar clouds
- Ieptonic scenario
 - infra-red from dust
 - magnetic field ~20 µG
 - depends on level of non-thermal X-rays
- new Fermi results: hadronic/leptonic?
- N 132D intermediate age
 - how long do SNRs accelerate up to 10¹⁵ eV

Fermi sources not detected with H.E.S.S.

- PSR J0540–6919: 1^{st} extra-galactic γ -ray pulsar
 - Fermi detects pulsed emission
 - X-ray luminous PWN
 - not detected with H.E.S.S.
- F(> 1TeV) < 4.8 x 10⁻¹⁴ cm⁻²s⁻¹ Crab pulsar (at 50kpc) 10 Parkes 640MHz [Fermi Coll., Science 2015] kes 1390MHz 10^{-9} GRAL IBIS/ISGRI 10-11 Fermi LAT $E^2 \times F(E)$ (erg/cm² /s) H.E.S.S. 10-13 10⁻¹⁵ ا ا ا ا 10⁻¹⁷ (erg/cr F(E) 10^{-19} 2 10⁻²¹ 10^{9} 10¹⁰ 10¹¹ Energy (eV) 10¹² 10^{-3} 10^{0} 10^{3} 10^{9} 10^{-6} 10^{6} Energy (eV)

- Unassociated source "P3"
 - HII region NGC 2029 / NGC 2032
 - marginally consistent with
 - SNR DEM L241
 - Seyfert 1 galaxy 2E 1445
 - steep spectrum

f the LMC, 28th Texas Symposium, Geneva, 14/12/2015.

Summary

- deep H.E.S.S. observations \rightarrow 3 TeV sources in LMC:
 - PWN N 157B
 - Crab counter-part
 - but low magnetic field and efficiency
 - 30 Dor C
 - first unambiguous detection of a superbubble in gamma rays
 - N 132D
 - one of the oldest TeV emitting SNRs
- first individual cosmic-ray sources in an external galaxy
- \rightarrow Science **347**:6220 (2015)
- tip of the iceberg?
 - future observations with CTA

