

Stability of relativistic two-component jets

Dimitrios Millas 28th Texas Symposium 16/12/2015, Geneva

Rony Keppens, CmPA, KU Leuven Z. Meliani, LUTH, Observatoire de Paris - Meudon

Outline

- Why two-component jets?
- Previous work
- Jets with poloidal & toroidal magnetic field
- Summary
- Future work

Why two components ? Observations !

- Indications: brightening, variability in TeV,...
- Variability in TeV:
 - high γ
 - ultra relativistic bulk motion of the jet
- Radio observations of pc-scale structure:
 - broad, slow (but relativistic) motion
- Two different (at least in terms of velocity) regions !
- Sometimes (?) :
 - Fast, light inner jet
 - Slow, heavier outer jet

Examples

SEDs comparison for Cen A and Mkn 421 (Ghisellini et al. 2005)

Radio and x-ray observations of radio loud quasar PKS 1127-145 (Siemiginowska et al. 2007)

Previous work

MHD 2.5D simulations with MPI-AMRVAC

- Meliani & Keppens 2007: Relativistic HD
- Meliani & Keppens 2009: Relativistic MHD, poloidal magnetic field only

Aim:

Investigate non-axisymmetric instabilities, induced by differential rotation

Meliani & Keppens, 2009, ApJ, 705, 1594

Rayleigh criterion for rotational stability

- Rotation leads to centrifugal effects
- How to determine (in)stability?

i.
$$\frac{d(r^4\Omega^2)}{dr} > 0$$
 stable
ii. $\frac{d(r^4\Omega^2)}{dr} < 0$ unstable
iii. $\frac{d(r^4\Omega^2)}{dr} = 0$ marginally stable

• Relativistic equivalent: angular momentum flux must increase with r

$$I = \gamma \frac{\rho + \frac{\Gamma}{\Gamma - 1}P}{\rho} v_{\varphi}r - \frac{B_{p}}{\gamma \rho v_{p}}rB_{\varphi}$$

Stability:

• Momentum equation near equilibrium

$$(\boldsymbol{\gamma}^{2}\boldsymbol{\rho}\boldsymbol{h} + \boldsymbol{B}_{z}^{2})(\frac{\partial}{\partial t} + \vec{v}\cdot\nabla)\vec{v} + \nabla P_{tot} + \vec{v}\frac{\partial Ptot}{\partial t} + \dots = 0$$

- Ignore lab frame contribution to charge separation (valid far inside the light cylinder)
- Assume perturbation is potential, plane wave

$$\lambda^2 \sim k[(\gamma^2 \rho h + B_z^2)_{in} - (\gamma^2 \rho h + B_z^2)_{out}]$$

Stability: $\lambda^2 < 0$ thus $(\gamma^2 \rho h + B_z^2)_{in} < (\gamma^2 \rho h + B_z^2)_{out}$

Initial velocity profile

•
$$V_z(r) = \begin{cases} \gamma_{z,in} \approx 30, & r \leq r_{in} \\ \gamma_{z,out} \approx 3, & r > r_{in} \end{cases}$$

•
$$V_{\varphi}(r) = \begin{cases} v_{\varphi,in} \left(\frac{r}{r_{in}}\right)^{a_{in}/2}, & r \leq r_{in} \\ v_{\varphi,out} \left(\frac{r}{r_{in}}\right)^{a_{out}/2}, & r > r_{in} \end{cases}$$
 $\frac{d(r^4 \Omega^2)}{dr} > 0$ stable $\frac{d(r^4 \Omega^2)}{dr} = 0$ marginally stable

$$\frac{d|I|}{dr} \propto (1 + \frac{a}{2})$$

• Interface is unstable!

$$v_{\varphi in} = 0.01$$
, $v_{\varphi out} = 0.001$

$$\alpha_{in} = 0.5, a_{out} = -2$$

Constraints from observations:

- Radius of outer jet: $R_{out} = 0.1 \text{ pc}$
 - Radio observations of M87, Biretta et al. 2002
- Inner radius less constrained: $R_{in} = R_{out}/3$
- Kinetic luminosity flux: $L = 10^{46} \text{ erg/s}$
 - typical for radio loud galaxy
- Initial density profile: constrained by kinetic energy flux
 - Assume that inner jet carries <1% of total kinetic energy flux

- Initial Lorentz factor: typical values for AGN jets
 - $\gamma_{z,in} \approx 30$
 - $\gamma_{z,out} \approx 3$

•
$$\rho(\mathbf{r}) = \begin{cases} 6.92 \rho_{ext}, & \mathbf{r} \leq \mathbf{r}_{in} \\ 119.94 \cdot 10^3 \rho_{ext}, & \mathbf{r}_{in} < \mathbf{r} < \mathbf{r}_{out} \\ \rho_{ext}, & \mathbf{r} > \mathbf{r}_{out} \end{cases}$$

- Total pressure balanced at each interface
- External medium density: used for scaling only

Initial magnetic field profiles

• $\sigma = 0 \rightarrow$ kinetically dominated jet (magnetization: $\sigma \equiv$ poynting to mass flux ratio)

Proper density at 0.5, 1 and 2.5 rotations of the inner jet Meliani & Keppens, 2009, ApJ, 705, 1594

Output from the simulations

- Inner jet & shear region end up magnetized
- Inner jet decelerates a little ($\gamma \sim 20$)
- Components remain separable in inner and outer jet
- Inner jet displaced from on-axis due to non axisymmetric modes
- Stratification converges to:
 - Inner fast, magnetized spine with $\gamma \sim 20$
 - Shear shell 100 times denser, lower γ

• Effective inertia important for the evolution!

 $\gamma^2 \rho h + B_z^2$

- Why?
 - Dispersion relation depends on the difference between the eff. inertia of inner & outer jet !
- Purely poloidal field case: $\gamma^2 \rho h|_{out} \approx 3.2[\gamma^2 \rho h + B_z^2]_{in}$
- Different evolution for $\gamma^2 \rho h|_{out} \approx 18[\gamma^2 \rho h + B_z^2]_{in}$ (see Meliani & Keppens 2009)

Jets with toroidal magnetic field

$$B_{\varphi}(r) = \begin{cases} B_{\varphi,in} \left(\frac{r}{r_{in}}\right)^{a_{in}/2} & , r \leq r_{in} \\ 0 & , r > r_{in} \end{cases}$$

$$B_z(r) = \begin{cases} Bzin, & r \leq r_{in} \\ \sqrt{0.001\gamma_{out}^2\rho_{out}}, & r > r_{in} \end{cases}$$

- Select B_{ϕ} that corresponds to $\sigma = 10^{-3}$
- Use I criterion to determine B_z of inner jet
- B_z of outer jet not explicitly constrained (~ $3B_{zin}$)
- Density contrast same as in previous cases

Proper density at t = 0

Proper density after half rotation of the inner jet

Proper density after one full rotation of the inner jet

Proper density after 1.5 rotations of the inner jet

 $B\phi=0$

 $B\phi \neq 0$

Average Lorentz factor of the inner jet with time (in rotations of inner jet)

(Preliminary) Results

- Case with zero toroidal field seems to agree with Meliani & Keppens, 2009
 - Rayleigh-Taylor type instabilities
- Including low σ toroidal field does not stabilize the system
- Eff.inertia ratio out/in ~ 0.1
- Formation of shear region, deceleration of the jet (up to ~1 rotation)
- Applications in FRI / FRII possible with proper adjustment

Future Work & Work in progress

- Examine B_{ϕ} connection with I criterion, new modes etc.
- High resolution runs (now 2 AMR levels, 200x200 base resolution)
- Analyze other jet parameters (e.g. radius with time)
- Examine different effective inertia ratios
 Difference between FRI & FRII ?
- More realistic configurations for B_φ and (mainly) v_φ
 Avoid steep transition
- Validate results:
 - create virtual radio maps & compare with observations
- Later on: 3D simulations
 - Different magnetization regimes (Poynting / kinetically dominated jets)
 - Other types of instabilities must be considered (e.g. Kink)