28th Texas Symposium on Relativistic Astrophysics Cosmic Neutrinos Parallel Session Geneva, 15th December 2015

The v generation: present and future constraints on neutrino masses from cosmology and laboratory experiments

> Martina Gerbino OKC, Stockholms Universitet and Nordita

Based on M.Gerbino, M. Lattanzi and A. Melchiorri, arXiv:1507.08614

ISS021E031766

A jigsaw puzzle

- The pieces: probes and observables
 - (what we measure, how we measure)
- Composing the puzzle: the likelihood code (how to combine what we measure)
- Identifying the picture: results

Oscillations

Texas Symposium 2015

M. Gerbino

Cosmology

Tightest constraints on the total mass BUT model dependent

Direct measurements

Robust and model independent BUT the less tight

Neutrinoless double-beta decay

Texas Symposium 2015

Datasets

Current, forthcoming, next-generation

 Oscillations: Global fit (Homestake, Gallex, Sage, Borexino, SNO, Super-Kamiokande, KamLAND, Daya Bay, Reno, Minos, T2K) after Neutrino 2014
Cosmology: Planck 2015, BAO (SDSS, WiggleZ), Euclid
Beta decay: Katrin, Holmes

•<u>Double-beta decay</u>: Gerda I, Gerda II, nEXO

Data analysis

Likelihood - Oscillations

$$\begin{aligned} \mathcal{L} = \overbrace{\mathcal{L}_{\text{osc}}} \cdot \mathcal{L}_{\text{dir}} \cdot \mathcal{L}_{0\nu 2\beta} \cdot \mathcal{L}_{\text{cosm}} \\ \mathcal{L} \propto \prod_{i} \exp \left[-\frac{(\theta_{\text{osc},i} - \bar{\theta}_{\text{osc},i})^{2}}{2\sigma_{\theta_{\text{osc},i}}^{2}} \right) \right] \\ \hline \frac{Parameter}{\Delta m_{12}^{2} [10^{-5}] \text{ eV}^{2}} \frac{68\% \, c.l.}{7.60 \pm 0.19} \\ |\Delta m_{13}^{2}| [10^{-3}] \text{ eV}^{2} 2.48 \pm 0.07 \, (2.38 \pm 0.06) \\ s_{12}^{2} & 0.323 \pm 0.016 \\ 100 \, s_{13}^{2} & 2.26 \pm 0.12 \, (2.29 \pm 0.12) \end{aligned}$$

Likelihood - Cosmology

Likelihood – Double-beta decay

$$\langle N_{\rm s} \rangle = \frac{m_{21} r_{ACC}}{m_{enr} T_{1/2}^{0\nu}} \quad \mathcal{L}(N_{\rm obs} | T_{1/2}^{0\nu}) = \sum_{N_{\rm s}=0} \frac{\pi - c}{N_{\rm s}!} \cdot \frac{\lambda_{b}}{(N_{\rm obs} - N_{\rm s})!}$$

Important assumptions: neutrinos are Majorana and On2b is driven mainly by mass mechanism

Data set	${\cal E}$ (kg yr	r) $\langle \epsilon \rangle$	Back	ground	BI ^a	Counts		
With PSI Golden Silver BEGe) 17.9 1.3 2.4	$\begin{array}{c} 0.619\substack{+0.044\\-0.070}\\ 0.619\substack{+0.044\\-0.070}\\ 0.663\pm0.0\end{array}$	022	45 1 9 3	$1 \pm 2 \\ 30^{+11}_{-9} \\ 5^{+4}_{-3}$	2 2 1 0	Gerda I GERDA co	llaboration, PRL 2013
^a In units Coax BEGe	$ \frac{10^{-3} \text{ counts/(keV kg yr).}}{54 0.619 0.432 0.001 0(B+S)} $ Gerda II – E at NOW14) and fiducial						pected performance (talk by Cattadori	
					<u> </u>	/		ounts given Osc ' Flanck ' DAO
Xe	23900	0.864	88.43	3.7/R0	SI IC	88(B)+ 88(B)+	-13(S-nh) -57(S-ih)	nEXO – Expected performance (talk by Pocar at NOW14) and
Ba tag	30000	0.864	35.42	1.2/RC	DI 3	5(B)+2	13(S-nh)[+68(S-ih)]	fiducial counts given Osc+Euclid
Texas S	ymposiun	n 2015				1	.0/13	M. Gerbino

Texas Symposium 2015

11/13

M. Gerbino

Texas Symposium 2015

12/13

M. Gerbino

Window on the Majorana phases

Conclusions

- Complementary approach of cosmology and laboratory experiments
- Cosmology currently (and in the near future) provides the most stringent constraints

• With proposed next-generation experiments, comparable constraining power from cosmology and laboratory avenues (need for better control of nuclear modeling)

• Possibility to break the barrier of Majorana phase estimation

For further questions: martina.gerbino@fysik.su.se

