

Indirect Dark Matter Searches with the *Fermi*Large Area Telescope

Johann Cohen-Tanugi on behalf of the *Fermi-*LAT collaboration

28th Texas Symposium on Relativistic Astrophysics, Geneva

Dec. 13-18, 2015

Evidence for / Salient Features of Dark Matter

Comprises majority of mass in Galaxies Missing mass on Galaxy Cluster scale Zwicky (1937)

Almost collisionless
Bullet Cluster
Clowe+(2006)

Large **halos** around Galaxies Rotation Curves Rubin+(1980)

Non-Baryonic

Big-Bang Nucleosynthesis, CMB Acoustic Oscillations WMAP(2010), Planck(2015)

Cosmological Constraints on Dark Matter

- No Standard Model particle matches the known properties of dark matter
- Many candidate particles have been proposed:
 - LAT searches (and my talk) focus on WIMPs
 - LAT is also sensitive to signals from axion-like particles, primordial black holes and gravitinos, not necessarily in the phase space where these could be candidates

WIMP Dark Matter as a Thermal Relic

- The calculation of the thermal-averaged cross-section $<\sigma v>$ needed to obtain the relic density is robust and gives $<\sigma v>\sim 3~10^{-26}~cm^3s^{-1}$
- At that cross-section we are probing the entire class of particle models that would generate GeV-to-TeV dark matter

Indirect Detection of WIMPs

- What we observe are stable final-state annihilation products
 - Neutral particles (γ; ν, observed by IceCube) travel directly to us
 - Charged particles (e+,e-,p,anti-p) diffuse in Galactic magnetic fields

Indirect Searches for DM in the Fermi Sky

The Key Formula for WIMP Searches

Particle Physics

Astrophysics (*J***-Factor)**

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\phi,\theta) = \frac{1}{4\pi} \frac{\langle \sigma_{ann}v \rangle}{2m_{WIMP}^2} \sum_{f} \frac{dN_{\gamma}^f}{dE_{\gamma}} B_f$$

- Note: J-factor includes distance, i.e., J-factor would decrease by four if a point-like source were twice as far away
- *Note*: the key factor of $1/m_{\chi}^2$ is b/c we express the *J*-factor as a function of mass density (which we can measure), not number density

Astrophysical Backgrounds (GeV)

- Diffuse Backgrounds:
 - Cosmic-ray interactions with interstellar matter and radiation fields
- Source Backgrounds:
 - Pulsars
 - Blazars and Active Galactic Nuclei
 - Supernova Remnants
 - Galaxies (starburst galaxies)

Unresolved Sources

Search Strategies (against the γ -ray Sky)

Search Strategies (against the γ-ray Sky)

LAT 7 Year Sky > 1 GeV

Observing the Inner Galaxy Fermi-LAT collaboration arxiv 1511.02938 in press to ApJ

LAT Intensity: 7 years, > 1 GeV, 15°x15°

- Observations of the inner Galaxy include strong astrophysical foreground and backgrounds along the line of sight
 - In the 1-100 GeV energy band these account for ~85% of the γ-rays in a 15°x15° box around the Galactic center

Observing the Inner Galaxy Fermi-LAT collaboration arxiv 1511.02938 in press to ApJ

- Use 4 GALPROP models tuned to large scale, excluding IG, then fit inner ring HI/CO component and IC, together with an ab initio and self-consistent source extraction and fitting
- In IG, IC higher and pi0 lower than baseline models
 - incomplete gas census, and artifacts present when transforming from survey data to the ring column density maps.
 - Different Xco factor and/or CR nuclei intensities (true for CMZ anyway)
 - Incomplete knowledge of ISRF, electron intensity underestimated
- An extended GC residual persists in all cases, but its spectrum depends on the IEM used in the analysis
- Its spatial extension can be modeled with a centrally peaked profile, however there are other positive (and negative) residuals also over the region with similar magnitude. A simple centrally peaked profile model is not a complete description for the residual emissions!

The Galactic Center (GC) excess

Excess emission

Dark matter annihilation, unresolved sources, CR electrons?

Mirabal (arxiv:1309.3428), Petrovic et al. (arxiv:1411.2980), Cholis et al. (arxiv:1506.05119), Lee et al. (arxiv:1506.05124), Bartels et al. (arxiv:1506.05104), Brandt & Kocsis (arxiv:1507.05616), Carlson et al. (arXiv:1510.04698) etc.

A Sample of Published Results from Indirect DM Searches with LAT Data

Representative Results for Different Search Targets for the b-quark Channel

A Sample of Published Results from Indirect DM Searches with LAT Data

Projections as computed for a recently submitted white paper

A Sample of Published Results from Indirect DM Searches with LAT Data

Representative Results for Different Search Targets for the b-quark Channel

DM search in a cosmological isotropic signal

Take all halo/subhalo DM contribution at all z

$$\frac{d\phi}{dE_0} = \frac{\langle \sigma v \rangle}{8\pi} \frac{c (\Omega_{\rm DM} \rho_c)^2}{m_{DM}^2} \int dz e^{-\tau(E_0, z)} \frac{(1+z)^3}{H(z)} \zeta(z) \frac{dN}{dE} \Big|_{E=E_0(1+z)}$$

WIMP annihilation cross-section

EBL attenuation (Domínguez+11)

"Flux multiplier"

WIMP-induced spectrum

- ""flux multiplier": encodes the clumpiness of the DM in the Universe; large uncertainties at small masses (extrapolations to simulations)
- Use 2 different modeling of the halo distributions to investigate theoretical uncertainties

Ackermann+15, JCAP09(2015)008 [astro--ph/1501.05464]

Search in the isotropic gamma-ray background

and remove

(and isotropic contribution of CR...)

could there
be a DM signal lurking
in this isotropic diffuse
emission?

DM limits to the isotropic signal

2 extremes (taken from Sanchez-Conde, Fermi Symposium 2015):

Conservative limits

- Only DM. No astrophysical contributions to the measured IGRB.
- Not preferred Galactic diffuse model among those tested in IGRB measurement paper.

Sensitivity reach

- Total astrophysical contribution fully explains the measured IGRB at all energies.
- We can entirely rely on a Galactic diffuse model to derive the IGRB.

Ackermann+15, JCAP09(2015)008 [astro-ph/1501.05464]

Examples of DM-produced gamma-ray spectra which are at the border of being excluded at 20 level in our two procedures to set DM limits

And a more realistic estimate

Comparison of Extragalactic Gamma-ray Background to Contributions from Sources

Ajello et, PRL 2015 arXiv:1501.05301

- Estimating the contribution from unresolved sources requires deriving the cumulative luminosity function N(Flux > Threshold) as a function of the threshold (log N – log S in astronomy parlance)
- Knowledge of the log N log S can also constrain the DM emission from local DM halos

Gamma-ray Space Telescope

Results: DM limits

Projected Sensitivity from Studies of the EGB & IGRB

- These limits are calculated by comparing the sum of contributions form the known γ-ray emitting source classes to the measured IRGB
- To make projections we must estimate how the IGRB measurement will improve with additional data (including Planck microwave data)

Search Strategies (against the γ-ray Sky)

LAT 7 Year Sky > 1 GeV

Some Dwarf Spheroidal Satellites of the Milky Way

Searches for DM in MW Satellites

- Roughly two dozen Dwarf spheroidal (dSph) satellite galaxies of the Milky Way known up to the DES era
- Negligible astrophysical γ -ray production expected

Joint Likelihood Analysis

- Assume same dark matter particle present in all dwarf spheroidal galaxies (same spectrum)
- Use all dwarf galaxies with well-determined J-factors in non-overlapping regions (N=15)
- Perform a combined likelihood analysis:
 - Predicted flux for each dwarf will depend on individual dark matter content (J-factor)
 - Include statistical uncertainties from stellar kinematic data.
 - Fit backgrounds independently
- Joint likelihood function:

$$L(D \mid \mathbf{\underline{p_m}}, \{\mathbf{\underline{p_k}}\}) = \prod_k L_k^{\text{LAT}}(D_k \mid \mathbf{\underline{p_m}}, \mathbf{\underline{p_k}})$$

Shared by all dwarfs (dark matter particle parameters)

$$\times \frac{1}{\ln(10)J_k\sqrt{2\pi}\sigma_k}e^{-(\log_{10}(J_k)-\overline{\log_{10}(J_k)})^2/2\sigma_k^2}$$

Fit for each dwarf (background sources)

$$\frac{d\Phi}{dE}(E,\phi,\theta) = \frac{1}{4\pi} \frac{\langle \sigma_{ann} v \rangle}{2m_{\rm DM}^2} \sum_f \frac{dN^f}{dE} B_f$$

 $\int_{\Delta\Omega(\phi,\theta)} d\Omega' \int_{los} \rho^2(r(l,\phi')) dl(r,\phi')$

Uncertainty in J-factor

Pass 8 15 dwarf LAT analysis

Combined LAT + MAGIC (Segue 1) analysis

≥ ermi

J. Rico et al. arXiv:1508.05827

Growing Number of Known Dwarf Galaxies

- Advent of deep, digital survey era in optical astronomy has led to the discovery of numerous new Milky Way-satellite dwarf galaxies
- LSST & other surveys will continue to find new dwarf galaxies after the Fermi mission

Discovery Volume for DM Signals from Dwarf Galaxies

- Optical surveys are quickly improving in both sky-coverage and depth, potentially giving us even better dSph targets
- Assuming dSph *J*-factor scaling with distance we could currently expect a 5σ signal for 100 GeV DM at the thermal relic cross section in the b-quark channel for any new dSph within 8 kpc (a volume of 2100 kpc³)
- With 15 years of data that increases to V > 4200 kpc³; i.e., doubles the discovery volume.
- At higher masses, where the sensitivity is signal limited, doubling the data increases the discovery volume by (15/6)^{1.5} ~ 4.0

DES Y1 and LAT analysis

- Spectroscopic observations are targeted and expensive
- Expected J-factors can be predicted assuming:
 - 1. New systems are dwarf galaxies
 - 2. All dwarf galaxies inhabit dark matter halos of similar mass (Strigari et al. 2008)
 - 3. A characteristic uncertainty on the accuracy of J-factor measurements (taken to be 0.4 dex here)
 - 4. The photometrically-determined distance to each system
- Candidates discovered in DES Y1 alone are expected to be sensitive to the thermal relic cross section.
- Analysis of all new systems discovered in 2015 is ongoing.

15-year projections

- 45 dwarfs and 15 years of data (assuming same analysis)
- But 3FGL source list and current IEM and isotropic model....
- Take-away message: the dSphs, by their cumulative effect in the era of large optical surveys, will remain a major DM targets!
- CTA will have plenty of new dSph in the South, and the TeV community has now taken the road to combined analyses.

Summary

- Indirect detection is the only detection technique that searches for DM in the distant astrophysical targets where it is known to exist.
- The LAT has reached sensitivity to DM annihilation at the thermal relic cross section in the present-day universe.
 - Mind the s-wave only assumption, among other subtleties...
- For dSphs, the LAT sensitivity scales as better than √t with more data.
 With 15 years of data:
 - The dSphs would allow us to exclude the thermal relic cross section for masses up to > 400GeV for the b-quark channel,
 - The dSphs would reach below 2 × 10⁻²⁷ cm³ s⁻¹ for masses of ~ 50
 GeV in the b-quark channel allowing us to confirm or rule out the DM interpretation of the Galactic center excess
- Searches targeting "dark satellites" and the unresolved component of the EGB will also scale better than √t with more data and will probe the thermal relic cross section up to ~100 GeV.