

Exploring the TeV Universe with HAWC

Robert J. Lauer

28th Texas Symposium on Relativistic Astrophysics

Geneva, Switzerland December 16, 2015

The HAWC collaboration

From MILAGRO to HAWC

MILAGRO

- Jemez Mountains, NM
- 2350 m above sea level
- operated from 2000 to 2008

High
Altitude
Water
Cherenkov
Observatory

HAWC Site

HAWC construction

Commercial steel tanks constructed at the site.

Custom-made, light-proof bladders shipped to the site.

~3900 truck loads of water transported up the mountain

Water transported to the site and purified there.

PMTs deployed into water and connected to central Counting Hause.

The HAWC array

- 22,000 m² water Cherenkov detector (WCD) array
- 300 WCDs at completion (March 2015)
- 188,000 liters of purified water per WCD
- 4 PMTs per WCD (3x 8" from Milagro + one high QE)
- Ongoing data taking during construction
- March 2015: Completion and inauguration

7.3 m

Cherenkov

Air shower reconstruction

Cosmic ray anisotropy

Abeysekara et al. 2014 Astrophys. J. **796** 108

86 billion events, collected over 181 sidereal days with ~1/3 of the array Large scale (>60°) removed (dipole, quadrupole, octupole) 10° radial smearing and multipole subtraction of large scale anisotropy

Discrimination of gamma rays

- Reconstruct air showers based on PMT hit times and charges
- 2. Reject hadronic primaries via bright hits outside the shower core

HAWC sensitivity

Astropart. Phys., **50-52** (2013)

HAWC Field of view

2 sr instantaneous FoV 2/3 of the sky each day

45°

HAWC gamma-ray sky map

Significance sky map from operation during construction of the HAWC array, growing between June 2013 and March 2015 from 106 to 300 WCDs

HAWC gamma-ray sky map

Significance sky map from operation during construction of the HAWC array, growing between June 2013 and March 2015 from 106 to 300 WCDs

The Crab nebula in early HAWC data

10 energy-proxy analysis bins (based on fraction of PMTs hit)

→ Verification of simulations: Gamma excesses for Crab Nebula match predictions

Data + simulation = input for a maximum likelihood analysis

→ fit fluxes and spectral parameters for arbitrary sources

Galactic Plane Source Deconvolution

Abeysakara et al., arXiv 1509.05401 accepted for publication in **ApJ**

Galactic Plane Source Deconvolution

Geminga: A nearby particle accelerator

Weekly sky maps from March 2015

HAWC significance map for March 2015, 7-days per frame, shifted by 1 day HAWC is monitoring over 2/3 of the sky for up to 6 hours per day

Crab Nebula light curve

HAWC-111 data from June 13, 2013 to July 9, 2014, binned in 7-day intervals.

Likelihood variability method (similar to 2FGL) with constant flux hypothesis: p-value for steady source model: 0.5 → consistent with being a steady source

Flux normalization also consistent with TeV fluxes measured by IACTs.

Monitoring Active Galactic Nuclei (AGN)

AGN studies with unbiased flare data:

- Flaring duty cycle → acceleration mechanism
- Orphan flare search → decoupled second peak from hadronic acceleration
- Flare alerts → trigger multi-wavelength follow-ups

Cosmological features illuminated by bright flare emission:

- Extra-galactic background light (EBL) studies:

 TeV cut-off due to absorption, probing evolution of infrared light emission
- Axion-like dark matter searches: reduced photon absorption due to conversion to/from axion-like particles
- Inter-galactic magnetic field searches: delayed/diffused lower energy emission pair production and deflection
- Lorentz invariance violation tests: delayed photons at lower energies due to energy-dependent speed

Mrk 421 and Mrk 501 flux light curves

HAWC-111 data June 13, 2013 to July 9, 2014

Mrk 421:

Constant flux hypothesis p-value: 0.0031

→ excluded

at 99% C.L.

Mrk 501:

Constant flux hypothesis P-value: 0.0299

→ disfavored at 97% C.L.

Latest Mrk 421 flux light curve

HAWC data from Nov. 26, 2014 to May 6, 2015, binned in 7-day intervals.

Constant flux hypothesis p-value: 1.6 *10 (5.6 σ)

Average flux larger than 1 Crab Unit. Very high flux states observed in December 2014, analysis in progress.

GRB and Flare Monitoring

Earliest HAWC (30 WCDs) GRB limit (on "naked eye" **GRB 130427A**)

Abeysekara et al., 2014 ApJ 800, 70

Expect 1-2 Per year in HAWC (extrapolating from Fermi)

Gilmore & Taboada, NIM A 2013

On-site automated searches:

- Follow-up on SWIFT GRB alerts
- Untriggered all-sky GRB search (designed to send out alerts, ~4 sec. reconstruction latency)
- Light curve flare monitor for selected extra-/galactic sources (ideal for very bright AGN flares)

Multi-wavelength analyses:

- HAWC can significantly increase simultaneous TeV coverage for transients
- We are working on tools to perform joint analyses of multi-instrument data: https://threeml.stanford.edu

Follow-up on IceCube neutrinos

Recent IceCube release (ATel: #7856):

- Muon Neutrino with E > 2.6 PeV
- June 11, 2014, 4:54 UTC

If neutrinos stem from $\pi^{+/-}$ -decay, we also expect gamma rays from π^0 -decay

HAWC searches:

at event time, location not in HAWC FoV

Integrated map for steady source

Next day / prior day

• ±2 and ±5 days

All HAWC searches consistent with only background:

HAWC ATel: #7868

Assuming IceCube **neutrino flux is steady and originating from N**_s **point sources** (IceCube, PRL 2014):

$$E^2 \Phi_{\nu}(E) = \frac{4\pi}{N_s} 1.5 \times 10^{-11} \left(\frac{E}{100 \text{ TeV}}\right)^{-0.3} \text{TeV/cm}^2 \text{ s}$$

Dark matter annihilation...

Abeysekara et al. 2014 Phys. Rev. D **90**, 122002

- Search for gamma rays emitted in dark matter annihilation, e.g. from bb or $\tau^{\dagger}\tau^{-}$ chain
- Best targets: high-mass objects with low astrophysical backgrounds:
 M31(Andromeda), Virgo cluster, dwarf galaxies

... and decay

- Search for gamma rays emitted from decaying dark matter
- Scales linearly with DM density: best targets are largest structures, e.g.
 Virgo galaxy cluster, M31

HAWC-111 dark matter annihilation limits

Limits on the dark matter annihilation cross section for 5 different decay channels, based on non-observation of gamma rays from 14 dwarf spheroidal galaxies

Robert J. Lauer

29

Outlook: Improved Reconstruction

Significantly improved reconstruction algorithms

- Reprocessing of all existing HAWC data in progress
- New algorithms already used in on-site reconstruction

Angular resolution for large events:

Gaussian "sigma" ~ 0.15°

68% containment: 0.24°

Achieving design resolution

Outlook: Outrigger Extension

- HAWC Sparse Outrigger Array: Enhanced Sensitivity above 10 TeV
- Accurately determine core position for showers off the main array
- Increase effective area above 10 TeV by 3-4x
- Funded by Los Alamos National Laboratory / Mexico
- 2500 liter WCDs: 1/80th size of HAWC WCDs

Summary

- HAWC is scanning TeV phenomena over 2/3 of the sky every day.
- HAWC is a unique TeV instrument for:
 - studying extended sources
 - surveying wide regions
 - monitoring transients
- Stay tuned for results from the first year of operating the full array.

