On electroweak vacuum stability during inflation

A.Shkerin, S.Sibiryakov EPFL & CERN & INR RAS Texas Symposium 2015, Geneva

- Motivation
- Methods
- Conclusion

Effective Higgs potential

Effective Higgs potential

Schematic plot of the effective Higgs potential

Running of the Higgs quartic coupling in the Standard Model

Effective Higgs potential

In the present Universe, EW-vacuum is sufficiently long-lived.

G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori and
A. Strumia, JHEP 1208, 098 (2012) [arXiv:1205.6497 [hep-ph]];
D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia, JHEP 1312, 089 (2013) [arXiv:1307.3536 [hep-ph]]; ...

What about other epochs?

Hubble parameter ${\cal H}$

Inflation

Inflation

Improved effective Higgs potential

J. R. Espinosa, G. F. Giudice and A. Riotto, JCAP 0805, 002 (2008) [arXiv:0710.2484[hep-ph]]; O. Lebedev and A. Westphal, Phys. Lett. B 719, 415 (2013) [arXiv:1210.6987 [hep-ph]]

Inflation

Not good if $H > h_{\text{max}}$

Overbarrier transitions become suppressed

But what about quantum tunneling?

Improved effective Higgs potential

J. R. Espinosa, G. F. Giudice and A. Riotto, JCAP 0805, 002 (2008) [arXiv:0710.2484[hep-ph]]; O. Lebedev and A. Westphal, Phys. Lett. B 719, 415 (2013) [arXiv:1210.6987 [hep-ph]]

Coleman De Luccia transitions: toy models

1.
$$V = \frac{\lambda h^4}{4}, \ \lambda < 0, \ H = 0$$
 $h_{\overline{\chi}}(\chi) = \sqrt{\frac{8}{|\lambda|}} \frac{\overline{\chi}}{\chi^2 + \overline{\chi}^2}$ $S_E = \frac{8\pi^2}{3|\lambda|}$

Coleman De Luccia transitions: toy models

1.
$$V = \frac{\lambda h^4}{4}, \ \lambda < 0, \ H = 0$$
 $h_{\overline{\chi}}(\chi) = \sqrt{\frac{8}{|\lambda|}} \frac{\overline{\chi}}{\chi^2 + \overline{\chi}^2}$ $S_E = \frac{8\pi^2}{3|\lambda|}$

2.
$$V = \frac{\lambda h^4}{4} + \frac{m_{eff}^2 h^2}{2}, \ \lambda < 0, \ H \neq 0$$

Coleman De Luccia transitions: toy models

1.
$$V = \frac{\lambda h^4}{4}, \ \lambda < 0, \ H = 0$$

 $h_{\overline{\chi}}(\chi) = \sqrt{\frac{8}{|\lambda|}} \frac{\overline{\chi}}{\chi^2 + \overline{\chi}^2}$
 $S_E = \frac{8\pi^2}{3|\lambda|}$
2. $V = \frac{\lambda h^4}{4} + \frac{m_{eff}^2}{2}, \ \lambda < 0, \ H \neq 0$
They break the scale invariance of the model.
 $S_E(\overline{\chi})$
 m_{eff}^2
 $S_E(\overline{\chi}) = \frac{8\pi^2}{3|\lambda|} (1 + 3(m_{eff}^2 - 2H^2)\overline{\chi}^2 \log(l/\overline{\chi}))$
 $l = \min(m_{eff}^{-1}, H^{-1})$
 H
 $\overline{\chi} \ll l$
So, if $m_{eff}^2 > 2H^2$, the only (nonhomogeneous)
solution has $\overline{\chi} = 0$.

Coleman De Luccia transitions: running coupling

 $\lambda(h)$ provides the additional source of scale invariance breaking.

For
$$m_{eff}^2 = H = 0$$
,
 $S_E = \frac{8\pi^2}{3|\lambda(h_*)|}, \quad \overline{\chi} \sim h_*^{-1}$

As far as $lh_* \ll 1$, the m_{eff}^2 and H corrections can be evaluated as before.

G. Isidori, G. Ridolfi and A. Strumia, Nucl. Phys. B 609, 387 (2001) [hep-ph/0104016].

Coleman De Luccia transitions: running coupling

 $\lambda(h)$ provides the additional source of scale invariance breaking.

For
$$m_{eff}^2 = H = 0$$
,
 $S_E = \frac{8\pi^2}{3|\lambda(h_*)|}, \quad \overline{\chi} \sim h_*^{-1}$

As far as $lh_* \ll 1$, the $m_{e\!f\!f}^2$ and H corrections can be evaluated as before.

Applicability conditions

- $H \approx const$,
- Shift of ϕ due to Higgs force should be small (if $m_{eff} = \alpha f(\phi)$)
- Inflaton energy density dominates (not actually true in the core of the bounce)
- G. Isidori, G. Ridolfi and A. Strumia, Nucl. Phys. B 609, 387 (2001) [hep-ph/0104016].

Conclusion

- For realistic values of H and h_{*}, both curvature and effective mass corrections to the CDLbounce are negligible. Bounce is almost the same as in flat space-time.
- Gravitational corrections to the bounce can be taken into account.

For example, if
$$m_{eff} = \xi R$$
, then $\Delta S_{E,grav} = \frac{256\pi^3(1-12\xi)}{45(M_P \overline{\chi} \lambda)^2} + O\left(\frac{(\overline{\chi}/l)^2}{(M_P \overline{\chi} \lambda)^2}\right)$

• Further corrections to the bounce action can come from Planck-suppressed higher-order operators in the Higgs action. The analysis of these corrections is the same as in flat space-time.

Conclusion

- For realistic values of H and h_{*}, both curvature and effective mass corrections to the CDLbounce are negligible. Bounce is almost the same as in flat space-time.
- Gravitational corrections to the bounce can be taken into account.

For example, if
$$m_{eff} = \xi R$$
, then $\Delta S_{E,grav} = \frac{256\pi^3(1-12\xi)}{45(M_P \overline{\chi} \lambda)^2} + O\left(\frac{(\overline{\chi}/l)^2}{(M_P \overline{\chi} \lambda)^2}\right)$

 Further corrections to the bounce action can come from Planck-suppressed higher-order operators in the Higgs action. The analysis of these corrections is the same as in flat spacetime.

Related topics

- Thermal corrections from other species;
- Initial conditions;
- Fate of AdS regions;

• ...

Thank you for attention!