Does the obscured AGN fraction really depend on luminosity?

Space Research Institute, Moscow

SS, Churazov, Krivonos, MNRAS 454, 1202 (2015)

Motivation

- What is the TORUS?
- How is it affected by the central source?
- Are there many obscured AGN?
- **History of SMBH growth**

INTErnational Gamma-Ray Laboratory

- □ Launched October 17, 2002by a Russian Proton
- ☐ In a high 3-day orbit
- ESA payload
- Continues to operate flawlessly

IBIS/ISGRI detector

Effective energy band: 15-300 keV

Geometrical area: 2600 cm²

Field of view: 28°x28°, 9°x9° fully coded

Angular resolution: 12 arcmin

35 deg x 35 deg field around M81

Peak exposure ~10 Msec

Mereminsky et al., in prep.

AGN in the local Universe:

INTEGRAL all-sky hard X-ray survey

7-yr (2002-2009) catalog: 151 non-blazar AGN at |b|>5°

Krivonos 2010

Compton thick AGN

Using high-quality X-ray data, one can estimate N_H or show that $N_H > 10^{25}$ (reflection-dominated)

Our INTEGRAL sample contains 17 such objects (out of 151), most of them now with good spectral data (*NuSTAR*)

Distribution of X-ray absorption columns

Fraction of obscured (N_H>10²²) AGN as a function of luminosity

 $\Omega_{\text{Torus}}/4\pi \approx 1-0.25(\log L_{17-60 \text{ keV}}-41.5)$

The same is seen in the Swift/BAT hard X-ray survey

Burlon et al. 2011

... and in X-ray (below 10 keV) surveys

AGN obscuration vs luminosity

Discrepancy with IR/radio selected samples?

Lawrence & Elvis 2010

A selection effect?

Propagation of hard X-rays through TORUS

Measured hard X-ray flux as a function of viewing angle and N_H

Average impact on AGN-1 and AGN-2 luminosities

Number of detected sources is proportional to $V_{max}^{2} L_{obs}^{3/2}$

Observed AGN luminosity function

Intrinsic AGN luminosity function

Intrinsic AGN luminosity function

Intrinsic fraction of obscured AGN as a function of luminosity

Conclusions

- Observed fraction of obscured AGN decreases with luminosity.
- This trend retains when AGN counts are corrected for selection bias and assuming isotropic central source. However, the intrinsic fraction of obscured AGN is higher than observed.
- If AGN emission is moderately collimated, there is no intrinsic declining trend of obscured AGN fraction with luminosity. Constant opening angle of the Torus?

Future work:

- Use larger local AGN samples
- Uniform spectral analysis for N_H estimation
- Comparison with clumpy torus models
- Extension to higher z and standard X-ray band