The Universal Prior to Extragalactic Cosmic Ray Production

Jörg P. Rachen

Department of Astrophysics / IMAPP Radboud University Nijmegen

28th Texas Symposium on Relativistic Astrophysics Geneva, 13-18 December 2015

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 1 / 16

The Hillas Plot: 10²⁰ eV everywhere! Why?

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Scale-free processes

Scale-free processes: Gravity grooves!

$$\left[rac{dn(M)}{dM}
ight]_{\mathsf{PSt}} = rac{
ho_c \Omega_m}{M^2 \sqrt{\pi}} \sqrt{rac{M}{M_*}} \qquad ext{for} \quad M < M_*$$

Press & Schechter, 1974

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

500

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 6 / 16

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 6 / 16

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 6 / 16

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 6 / 16

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Gravitational potential energy density converted to magnetic energy density

$$\frac{B_r^2}{8\pi} = \xi \left[r \frac{d}{dr} \frac{3U_{\rm G}}{4\pi r^3} \right]_{r=\sigma R_{\rm S}} = \frac{9c^4}{400\pi G} \frac{\xi}{\sigma^2} \frac{1}{r^2}$$

Gravitational potential energy density converted to magnetic energy density

$$ZeB_r r = 0.3Zm_Pc^2 \frac{\sqrt{2\alpha\xi}}{\sigma}$$

Gravitational potential energy density converted to magnetic energy density

$$ZeB_rr = 0.3Zm_Pc^2rac{\sqrt{2lpha\xi}}{\sigma}$$

Total nonthermal energy integrated over hirachical clustering

$$\Psi_{\mathsf{nth}} \gtrsim H_0 \int_0^{M_*} dM \left[\frac{3c^2}{50} \frac{\xi}{\sigma} M \right] \left[\frac{dn(M)}{dM} \right]_{\mathsf{PSt}} \simeq 4 \times 10^{-3} \frac{\xi}{\sigma} \frac{H_0^3 c^2 \Omega_m}{G}$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Gravitational potential energy density converted to magnetic energy density

$$ZeB_rr = 0.3Zm_Pc^2rac{\sqrt{2lpha\xi}}{\sigma}$$

Total nonthermal energy integrated over hirachical clustering

$$\Psi_{\rm nth} \gtrsim H_0 \int_0^{M_*} dM \left[\frac{3c^2}{50} \frac{\xi}{\sigma} M \right] \left[\frac{dn(M)}{dM} \right]_{\rm PSt} \simeq 4 \times 10^{-3} \frac{\xi}{\sigma} \frac{H_0^3 c^2 \Omega_m}{G}$$

Efficiency

$$\xi = \xi_{
m nth} \, f_{
m gas} rac{\Omega_b}{\Omega_m} \lesssim 10^{-2}$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Gravitational potential energy density converted to magnetic energy density

$$ZeB_r r = 0.3Zm_{
m P}c^2rac{\sqrt{2lpha\xi}}{\sigma} \sim (7-18) Z \, {
m EeV}$$

Total nonthermal energy integrated over hirachical clustering

Efficiency

$$\xi = \xi_{
m nth} \, f_{
m gas} rac{\Omega_b}{\Omega_m} \lesssim 10^{-2}$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Gravitational potential energy density converted to magnetic energy density

$$ZeB_r r = 0.3Zm_{
m P}c^2rac{\sqrt{2lpha\xi}}{\sigma} \sim (7-18) Z \, {
m EeV}$$

Total nonthermal energy integrated over hirachical clustering

Efficiency and Scaling

$$\xi = \xi_{ ext{nth}} \, f_{ ext{gas}} rac{\Omega_b}{\Omega_m} \lesssim 10^{-2}$$
 .

$$rac{d\Psi_{
m nth}}{d\ln r} \propto r^{1/2}$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

The Hillas Plot: Explained and understood!

$$E_{\rm H} \sim \left[ZeB_r r \right]_{
m cosmology}$$

$$\Psi_{nth} \gtrsim \Psi_W$$

 $rac{d\Psi_{
m nth}}{d\ln r} \propto r^{1/2}$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Getting to cosmic rays

Particle acceleration

No losses

$$\hat{E} \lesssim \beta E_{\mathsf{H}} \qquad (D = \frac{1}{3}r_{\mathsf{g}}c)$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 9 / 16

No losses

$$\hat{E} \lesssim \beta E_{\mathsf{H}}$$
 $(D = \frac{1}{3}r_{\mathsf{g}}c)$

Adiabatic losses

$$\hat{E} \lesssim rac{1}{3}eta E_{\mathsf{H}}$$
 $(D = rac{1}{3}r_{\mathsf{g}}c, \ eta \sim eta_{\mathsf{ex}})$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 9 / 16

No losses

$$\hat{E} \lesssim \beta E_{\mathsf{H}}$$
 $(D = \frac{1}{3}r_{\mathsf{g}}c)$

Adiabatic losses

$$\hat{E} \lesssim rac{1}{3}eta E_{\mathsf{H}}$$
 $(D = rac{1}{3}r_{\mathsf{g}}c, \ eta \sim eta_{\mathsf{ex}})$

Other losses, e.g. interaction

$$au_{\mathsf{a}} \sim rac{3}{eta^2} rac{E}{eBc} \lesssim au_{\mathsf{loss}}$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 9

No losses

$$\hat{E} \lesssim \beta E_{\mathsf{H}}$$
 $(D = \frac{1}{3}r_{\mathsf{g}}c)$

Adiabatic losses

$$\hat{E} \lesssim rac{1}{3}eta E_{\mathsf{H}}$$
 $(D = rac{1}{3}r_{\mathsf{g}}c, \ eta \sim eta_{\mathsf{ex}})$

Other losses, e.g. interaction

$$au_{\mathsf{a}} \sim rac{3}{eta^2} rac{E}{eBc} \lesssim au_{\mathsf{loss}}$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 9 / 16

No losses

$$\hat{E} \lesssim \beta E_{\mathsf{H}}$$
 $(D = \frac{1}{3}r_{\mathsf{g}}c)$

Adiabatic losses

$$\hat{E} \lesssim rac{1}{3}eta E_{\mathsf{H}}$$
 $(D = rac{1}{3}r_{\mathsf{g}}c, \ eta \sim eta_{\mathsf{ex}})$

Other losses, e.g. interaction

$$au_{\sf a} \sim rac{3}{eta^2} rac{E}{eBc} \lesssim au_{\sf loss}$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19 9 / 16

Contributions to the cosmic ray flux above the ankle: clusters of galaxies

Hyesung Kang,^{1*†} Jörg P. Rachen^{2*} and Peter L. Biermann^{2*}

¹Department of Earth Sciences, Pusan National University, Pusan 609-735, Korea

²Max-Planck-Institut für Radioastronomie, D-53010 Bonn, Germany

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Contributions to the cosmic ray flux **below** the ankle: clusters of galaxies **!!**

Texas 2015 / Session 19

Basic model and analytical approximation

Cosmological integral over source function

$$N_{i}(E) = \int_{0}^{\hat{z}_{i}(E)} dz \; \frac{\Psi_{i}(E[1+z])(1+z)^{m}}{\mathcal{E}(z)} = N_{i,0} \left(E/E_{0}\right)^{-a} f_{\mu}(E/\hat{E}_{i})$$

with $\mathcal{E}(z) = \Omega_{m}(1+z)^{3} + \Omega_{\Lambda} \approx \frac{1}{3}(1+z)^{3} + \frac{2}{3}, \; \mu \equiv 1+m-a$
and $\hat{z}_{i}(E) = (E/\hat{E}_{i})^{-k} - 1, \quad k = \frac{1+b}{4+2b} \approx 0.38, \quad m = -1, 0, 1$

Analytical approximation for cutoff function

$$\begin{split} f_{\mu}(y_i) &= \frac{1}{\mu\sqrt{2}} \left[y_i^{-k\mu} \, _2F_1\left(\frac{1}{2}, \frac{\mu}{3}; \, 1 + \frac{\mu}{3}; \, -\frac{1}{2}y_i^{-3k} \right) \right. \\ &\left. - \, _2F_1\left(\frac{1}{2}, \frac{\mu}{3}; \, 1 + \frac{\mu}{3}; \, -\frac{1}{2} \right) \right] \quad (y_i \equiv E/\hat{E}_i \, , \, \mu < 0) \\ f_0(y_i) &= \frac{\sqrt{2}}{3} \left[\coth^{-1}\sqrt{\frac{3}{2}} - \coth^{-1}\sqrt{1 + \frac{1}{2}y_i^{-3k}} \right] \end{split}$$

Abundances

$$\begin{split} N_{i,0}/N_{p,0} &= \left(Y_{p,i}/Y_{p,p}\right) Z_i^{a-1} \rightsquigarrow \quad N_{\mathsf{He}}/N_p \approx 0.315 \times 2^{a-1} , \quad N_i \simeq 0 \text{ else} \\ \hat{E}_i/\hat{E}_p &\approx \sqrt[1+b]{Z_i^3/A_i^{1-b}} \rightsquigarrow \quad \hat{E}_{\mathsf{He}}/\hat{E}_p \approx 3.2 \end{split}$$

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

Texas 2015 / Session 19

Energy / GeV

E^3 dN/DE (normalized)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Energy / GeV

Helium ratio

(4) E (4) E (4)

- 2

PRELIMINARY — provided by Satyendra Thoudam

-

Coming up ...

Radio detections of cosmic rays reveal a strong light mass component at 10^{17} - $10^{17.5}$ eV

S. Buitink^{1,2}, A. Corstanje², H. Falcke^{2,3,4,5}, J. R. Hörandel^{2,4}, T. Huege⁶, A. Nelles^{2,7}, J. P. Rachen²,

L. Rossetto², P. Schellart², O. Scholten^{8,9}, S. ter Veen³, S. Thoudam², T. N. G. Trinh⁸, J. Anderson¹⁰,

to be published in Nature, expected January 2016

Study of the energy spectrum and composition of cosmic rays up to the highest energies

S. Thoudam^{1,2,*}, A. van Vliet¹, A. Achterberg¹, S. Buitink³, H. Falcke^{1,4,5}, J.R. Hörandel^{1,4}, J.P. Rachen¹

¹ Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

² Now at: Department of Physics and Electrical Engineering, Linnéuniversitetet, 35195 Växjö, Sweden

³ Astronomical Institute, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium

4 NIKHEF, Science Park Amsterdam, 1098 XG Amsterdam, The Netherlands

⁵ ASTRON, Postbus 2, 7990 AA Dwingeloo, The Netherlands

Jörg P. Rachen (Radboud University)

Universal Prior to EGCR Production

to be submitted January 2016

• The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiquitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiquitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiguitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)
- Bayesian Prior: Energetic guideline for detailed modelling of cosmic ray sources

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiquitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)
- Bayesian Prior: Energetic guideline for detailed modelling of cosmic ray sources
 - ... to replace the Kronecker δ_{jk} prior

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiquitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)
- Bayesian Prior: Energetic guideline for detailed modelling of cosmic ray sources
 - ... to replace the Kronecker δ_{jk} prior
 - Total energy budget limited: spectra must be close to E^{-2}

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiquitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)
- Bayesian Prior: Energetic guideline for detailed modelling of cosmic ray sources
 - ... to replace the Kronecker δ_{jk} prior
 - Total energy budget limited: spectra must be close to E^{-2}
- Quite solid prediction for VHECR from clusters of galaxies

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiquitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)
- Bayesian Prior: Energetic guideline for detailed modelling of cosmic ray sources
 - ... to replace the Kronecker δ_{jk} prior
 - Total energy budget limited: spectra must be close to E^{-2}
- Quite solid prediction for VHECR from clusters of galaxies
 - Ankle as extragalactic dip, consistent with composition trend

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiquitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)
- Bayesian Prior: Energetic guideline for detailed modelling of cosmic ray sources
 - ... to replace the Kronecker δ_{jk} prior
 - Total energy budget limited: spectra must be close to E^{-2}
- Quite solid prediction for VHECR from clusters of galaxies
 - Ankle as extragalactic dip, consistent with composition trend
 - Prediction of "helium fingerprint" right below the ankle

- The presence of cosmic rays in the Universe is not more or less mysterious that the presence of light
 - This includes ultra-high energies!
 - Ubiquitus, self-similar process: smooth power law spectrum in spite of source mix (many sources—one physics)
- Bayesian Prior: Energetic guideline for detailed modelling of cosmic ray sources
 - ... to replace the Kronecker δ_{jk} prior
 - Total energy budget limited: spectra must be close to E^{-2}
- Quite solid prediction for VHECR from clusters of galaxies
 - Ankle as extragalactic dip, consistent with composition trend
 - Prediction of "helium fingerprint" right below the ankle
 - Possible explanation for PeV electron neutrinos due to photodisintegration of helium (tbd)

Thanks!

Bayesian Modeling of the Galactic Magnetic A Field using ground and space-based radio to sub-millimetre and ultra-high energy cosmic ray data

Torsten Enßlin, Glennys Farrar, Diego Harari, Marijke Haverkorn, Jörg Hörandel, Tess Jaffe, Jans Jasche, Natalia Nowak, Niels Oppermann, Katarzyna Otmianowska-Mazur, Christoph Pfrommer, Jörg Paul Rachen (coordinator), Anvar Shukurov, Theo Steininger, Xiaohui Sun, Robert Tautz, Michael Unger, Arien van Vliet; with contributions by Nafiun Awal, Dieter Breitschwerdt, Günter Sigl, Todor Staney, Andy Strong; Bern, Switzerland, 2014-2016.

Universal Prior to EGCR Production

Texas 2015 / Session 19