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Exact Solutions to Einstein’s Field Equations (EFE) 

• No unique or simple definition (Kramer et al. 1980; Stephani et al. 2003).   

 

• EFE with a cosmological constant: 

 

•                                     :  Einstein tensor representing the spacetime curvature; κ=8πG/c4 

 

• 𝑔𝑎𝑏:  metric tensor,        𝑅𝑎𝑏 ≡ 𝑅𝑐
𝑎𝑐𝑏 : Ricci tensor,         𝑅𝑎𝑏𝑐𝑑 : Riemann tensor 

 

• Tab  :  the energy-momentum tensor representing the source of the gravitational field  

 

• The EFE are 10 nonlinear partial differential equations in 4 independent variables  

 

• Solutions are usually obtained by assuming symmetries on the metric and other simplifying 
restrictions   
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Given a source energy-momentum tensor, an exact solution generally means a 
solution to the Einstein equations where the spacetime metric functions are 
expressed in terms of elementary or well-known special functions.   
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Studying Exact Solutions to Einstein’s Equations 

•  In the first edition of "Exact Solutions of Einstein's Field Equations" by Kramer, 
Stephani, Herlt, MacCallum and Schmutzer, Cambridge University Press, 1980, 
the authors collected 2000 papers on exact solutions.  

 

• 4000 more papers collected in 1999 leading to the second edition in 2003,  but a 
large fraction  are re-derivations.  

 

• There is the pure mathematical problem of deriving an exact solution and then  
the physical interpretation of the exact solution 

 

• Interpreting the currently available solutions is commonly more encouraged in 
the field than deriving new ones 

 

• Solutions have been invariantly classified using algebraic symmetry schemes 
such as  Petrov or Segre types, and also groups of motions.  
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Petrov Algebraic Classifications of exact solutions 

• Using the Weyl tensor (Petrov, Uch. Zapiski Kasan Gos. Univ. 1954; Pirani, 1957; 
Geheniau, 1957, Debever, 1959; Bel, 1959; Penrose, 1960) 
 

• Weyl tensor for a spacetime with n dimensions is given by 
 

 

 

• For the classification, Weyl tensor is considered as an operator acting on the space of 
bivectors Xab 

 

• Symmetries of a spacetime are associated with the multiplicity of its eigenbivectors 
  

• The classification also offers some insights on some physical properties  
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Petrov  Type Eigenbivectors/ Principal null directions  

I Four simple directions (most general) 

II One double and two simple 

D Two double null directions 

III  One triple and one simple 

N One quadruple 

O The Weyl tensor vanishes Mustapha Ishak, Geneva 2015 



Segre Algebraic Classifications of exact solutions 

            Using the multiplicity of the eigenvectors of the Ricci tensor 

                                                                  (Segre, Mem. R. Acad. Lincei 3a, 127, 1874, 

                                                                    Plebanski, Acta Phys. Polo. 26, 963,1964) 
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Classical books/catalogs of exact solutions 
For  example:  
• Kramer, Stephani, Herlt, MacCallum and Schmutzer, Exact Solutions of Einstein’s Field Equations, 

Cambridge University Press,  1980. (First edition) 
 

• Stephani, Kramer, MacCallum, Hoenselaers, Herlt, Exact Solutions of Einstein’s Field Equations 
Cambridge University Press, Cambridge, 2003. (Second edition)  
 

• Krasinski, Inhomogeneous Cosmological Models, Cambridge University Press,  Cambridge, 1997 
 

• Ellis & van Elst, Cargèse Lectures 1998, Cosmological Models,  gr-qc/981204 
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Online database of exact solutions (static) 
http://www.personal.soton.ac.uk/rdi/database/ (J. Skea, 1997) 
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http://www.personal.soton.ac.uk/rdi/database/


Online database of exact solutions: grdb.org (non-static)  
only the metric is stored, all calculations are done interactively  
using GRTensorII software  (MI & Lake, CQG 19 (2002) 505-514) 
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The GRTensorJ calculator of grdb.org can upload a metric  
and perform tensor or tetrad calculations  

(currently under further development!) 
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Applications of exact solutions in Astrophysics 

• Slowly rotating  stars and planets: The Schwarzschild solution 

• Static black holes: The Schwarzschild solution  

• Star interiors: e.g.  Tolman, Buchdahl, Heintzmann solutions   

• Neutron stars:  Tolman VII and Durgapal solutions  

• Rotating black holes: The Kerr-(Newman) solution  

• Gravitational waves: gravitational plane wave exact solution 

• Standard model of cosmology: The Friedmann-Lemaitre-
Robertson-Walker solution 

• Inhomogeneous Cosmological models: e.g. Lemaitre-Tolman-Bondi 
solutions, Szekeres solutions, Oleson solutions 
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Solar and planetary systems: The Schwarzschild  exterior solution 
(Schwarzschild, Sitz. Preuss. Akad. Wiss.  23, p189, Jan. 1916) 

 
• Gravitational field in vacuum around a concentric spherical mass. In Schwarzschild 

coordinates:  
 
 
 
 

• Uniqueness theorems for the solution 
 

• A good description of the field around slowly rotating astrophysical objects such as  
planets, stars and static black-holes  
 

• Expressed in other coordinates and Taylor expansions of its metric functions 
 

• Played a role in planetary/solar tests of  GR 
 

• Played a role in gravitational lensing studies 
 

• Used in construction of other exact solutions such  
as cosmological Swiss-Cheese models.   
 
 
 
 

Credit: Johnstone  using an image 
from NASA's Galileo spacecraft. 
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Rotating black holes: The Kerr  exterior solution  
(Kerr, Phys. Rev. Lett. 11 , 237–238, 1963) 

 • Describes the gravitational field around  a rotating axially symmetric black 
hole 

   

• Metric in Boyer-Lindquist coordinates (J. Math. Phys. 8 (2): 265, 1967) reads 

 

 

 

 

 

• m the mass and a  the angular momentum per unit mass.  

• Uniqueness theorems for the solution 

• Used to describe astrophysics of quasars 

• Used to describe accreting flows in  
stellar-mass or super-massive black holes  

• Used as starting point in some simulations 
of rotating black-holes 
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Application to compact star models: 
isolated Static Spherically Symmetric (SSS) solutions 

• Over 130 distinct SSS  solutions where studied in (Delgaty & Lake, Comp. Phys. 
Commun.  115, 395, 1998) 

 

• Only 10% pass minimal physical acceptability conditions: e.g. positive definiteness of the 
pressure and density; subluminal adiabatic sound speed  (Delgaty & Lake, Comp. Phys. 
Commun. 115, 395, 1998; MI, Chamandy, Neary, Lake,  PRD, 64, 024005, 2001).  

 

• The Schwarzschild interior solution (Sitz. Preuss. Akad. Wiss.  24, p424,  Feb. 1916) does 
not pass the subluminal adiabatic sound speed test. 

 

Some exact solutions that pass the tests: 
 

• Buchdahl solution (Buchdahl, ApJ 147, 310 (1967)) 

• Finch and Skea solution (CQG. 6, 467 (1989)) 
Heintzmann solution (Z. Phys. 228 489 (1969)). 

• Durgapal solution (J. Phys. A 15 2637 (1982)). Lattimer  & Prakash, Astrop.  J.  550:426-442, 
2001  

• Tolman VII solution (Phys. Rev. 55, 364, 1939).  Lattimer & Prakash, Phys. Rept. 442: 109-
165,2007); 
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Neutron stars: the Tolman VII solution 

• The metric in the original formulation by Tolman (Phys. Rev., 55, 364, 1939) 

 

 

 

 

 
Lattimer  & Prakash, Astrop.  J.  550:426-442, 2001; Raghoonundun, Hobill, PRD 92(2015) 124005. 
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Credit: 

http://www.astroscu.unam.mx/neutrones/NS-picture/NStar/NStar-I.gif) Mustapha Ishak, Geneva 2015 



(Gravitational) radiation: pp-wave and  
plane gravitational wave exact solutions  

• Perturbative plane waves solutions for GW are often used but the exact solutions 
have provided exact theoretical basis for their existence in Einstein’s theory.  

 

• In Brinkmann coordinates (Math. Ann. 18: 119, 1925), the metric reads:  

 

 

•  H(u,x,y) is a smooth function.  An important class of symmetric pp-waves is the 
plane waves exact solution given by:  

 

 

• a(u) and b(u) describe the 2 polarization modes   

   

• c(u)=0 : the solution describes vacuum plane waves or plane gravitational waves 
(Baldwin, Jeffery, Proc. Roy. Soc. Lond. A 111 (757): 95, 1926)  

 

• Using the exact solution, some recent work on pulsar timing arrays claiming that 
non-linear effects can become important (Harte, CQG 32 (2015) 17, 175017) 
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Exact solutions as cosmological models  

• The everywhere-isotropic Friedmann-Lemaître-Robertson-Walker  (FLRW) standard 
model of cosmology: 

 

 

 

• A perfect fluid source 

 

• EFE give the Friedmann equations:  

 

 

 
 

• Over 300 exact solutions as anisotropic or inhomogeneous cosmological models  
  

“An exact solution to Einstein equations is termed cosmological if it can reproduce a FLRW 
metric when its arbitrary constants or functions assume certain values or limits."  
(Krasinski, Inhomogeneous Cosmological Models, Cambridge U.P., 1997) 

 

• There are invariantly well-defined conditions for an FLRW metric 
 

Mustapha Ishak, Geneva 2015 



• Szekeres family spatially inhomogeneous models, dust source. (Szekeres, Commun. Math. 
Phys. 41, 55–64,  1975). 

  

• Szekeres-Szafron family of inhomogeneous models, pressure added to the source but with 
some known limitations (Szafron, J. Math. Phys. 18, 1673, 1677). 

 

• Stephani-Barnes family of inhomogeneous models, energy density and pressure in the 
source but limitations arise with a barotropic equation of state. (Stephani, Commun. Math. 
Phys. 4, 137, 1967; Barnes, GRG  4, 105, 1973). 

 

• The Lemaître-Tolman-(Bondi) inhomogeneous spherically symmetric models, dust source.  
(Lemaître, Ann. Soc. Sci. Bruxelles 53, 51, 1933; Tolman, Proc. Nat. Acad. Sci. U.S. 20, 169-
176, 1934; Bondi, Mon. Roy. Astr. Soc. 107, 410, 1947).  

 

• The Oleson inhomogeneous models with perfect fluid source (Oleson, J. Math. Phys. 12, 
666, 1971).  

 

• Bianchi family of models, spatially homogeneous but anisotropic, perfect fluid source (e.g. 
Ellis and MacCallum, Commun. Math. Phys. 12, 108–141,  1969) 

 

• Kantowski-Sachs family of models, , spatially homogeneous but anisotropic, perfect fluid 
source (Kantowski and Sachs, J. Math. Phys. 7, 443–446 1966.) 

 

 

 

 

Exact solutions as cosmological models: examples  
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The Lemaitre-Tolman(-Bondi) (LT or LTB) 
Spherically symmetric inhomogeneous models 
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• Lemaître, Ann. Soc. Sci. Bruxelles 53, 51, 1933; Tolman, Proc. Nat. Acad. Sci. U.S. 
20, 169-176, 1934; Bondi, Mon. Roy. Astr. Soc. 107, 410, 1947: 

 

 

 

• EFE with a Λ give 

 
      where R(t,r) is a generalized scale factor and M(r) the active gravitational mass 

 

• tB(r) , the bang time 
 

 

• Extensively used for the topic of void-models for the cosmic acceleration problem 
 

• Used for spherical collapse and exact modeling of structure formation (e.g. 
Hellaby, Krasinski, PRD, 73, 023518, 2006;  Sussman, CQG, 30 (2013) 065016). 



Szekeres Inhomogeneous cosmological models 
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• Originally derived by Szekeres (Comm. Math. Phys. 41, 55 (1975); PRD 
12, 10 (1975)). The metric is 
 
 
 
 

• Two classes depending on                                     .  For example for  
 
 
 
 
 
 

• Dust source 
• No symmetries: no Killing vectors (Bonnor, Sulaiman, Tomimura, GRG, 

8, 549, 1977) 
 

0, r



Szekeres Inhomogeneous models as exact 
perturbations on a smooth background 
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• Reformulated by Goode & Wainwright (MNRAS 198, 83, 1982;  PRD 26, 3315, 
1982). The metric reads 

 
 
       where:  

 
• The EFE  give                                               

 
 
 
 

• time and space dependencies for each of the two classes are given in (Goode 
and Wainwright 1982a, 1982b). 
 

• Shows the models as exact perturbations on the top of a smooth background 
allowing comparisons with perturbation theory and growth of structures 

      (Goode and Wainwright 1982; Meures & Bruni, PRD 83:123519,2011; MI,   
      Peel, PRD 85, 083502, 2012) 



Szekeres Inhomogeneous models in LT-type coordinates 
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• In the a Lemaitre-Tolman type of coordinates (e.g. Hellaby, Krasinski,  PRD 
66:084011,2002) 
 
 
 
 

• where the metric functions satisfy the constraints  
 

 
 
 

• The EFE  give:                                             
 

• Makes comparisons to LTB and FLRW geometries simpler  
 

• hyperbolic spatial sections k(r)<0, parabolic k(r)=0, and elliptic k(r)>0  
• ε=0,+1,or -1 determines how the 2-surfaces (p,q) of constant r foliate the spatial 

sections of constant t 
• E(r,p,q) determines the mapping of p and q onto the 2-surface of constant t and r. 



Szekeres Inhomogeneous models in LT-type coordinates 
 

The spatial functions are specified using large scale structure fittings or 
linked to various initial conditions (Bolejko PRD 73:123508,2006; MI, Peel, 
Troxel, PRL. 111, 251302, 2013) 

The time evolution in the 3 cases: 

Mustapha Ishak, Geneva 2015 



The null geodesics equations in the Szekeres models 

The affinely parameterized null geodesic equations, 𝑘    ;𝛽
𝛼 𝑘𝛽 = 0, read (e.g. Nwankwo, 

MI, Thompson, JCAP 1105:028, 2011) 

 

 

 

 

 

 

 

 

 

 

 

where 𝑘𝛼 =
𝑑𝑥𝛼

𝑑𝑠
,  and  .=

𝑑

𝑑𝑠
. the LTB equations are obtained by setting ε=1 and 𝐸,𝑟 = 0 
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Distances in Szekeres Inhomogeneous Cosmological models 

The area-distance, luminosity distance and redshift are calculated from: (e.g. 
Nwankwo, MI, Thompson, JCAP 1105:028, 2011) 

 

 

 

 

 

 

 

 

 

 

• Where                                           and   

 

• Alternatively, the Sachs equations can  
be used to get θ (e.g. Bolejko, Celerier 
PRD 82:103510,2010)  
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Application: cosmic acceleration 

• Although less of a debate in last 2 years, the question of apparent 
acceleration due to observations in an inhomogeneous model attracted a lot 
of interest (e.g. reviews Enqvist, GRG 40, 451, 2008;  Marra & Notari, CQG, 28, 
164004, 2011) 

 

• In inhomogeneous models,  the Hubble expansion is a function of space and 
time so spatially uneven expansion can be modeled  

 

• An observer in an underdense region expanding faster than the average can 
see an apparent accelerated expansion.  

 

• The cosmological Copernican principle was  dropped  

 

• Kilo-parsec to Mega-parsec underdense region were found inconsistent with 
observations but a Giga-parsec underdense region model persisted (e.g. 
Biswas, Notari, W. Valkenburg, JCAP 1011, 030, 2010)  
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Observations in a Giga-parsec scale underdense region  (“void”)  
(e.g. Biswas, Notari, Valkenburg, JCAP 1011, 030, 2010) 
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Challenges to apparent acceleration 

• Even if the Copernican principle is dismissed, large-void models have been 
criticized in the literature. 

 

• Some papers found LTB large voids in tension with data sets: e.g. (Moss, Zibin, 
Scott, PRD 83:103515,2011) found he models predict a local  
                                  and also in tension with BAO (in disagreement with (Biswas, 

Notari, W. Valkenburg, JCAP 1011, 030, 2010) 

 

• (Zibin and Moss, CQG 28:164005,2011) found that a large class  of void 
models are ruled out as they predict a much larger kinetic-Sunayev-
Zeldovich power than observed, but mention some caveats 

 

• Using the Szekeres models, (MI, Peel, Troxel, PRL 111, 251302, 2013) found 
that the models that fit well supernova data fail to reproduce the 
suppression of growth of large scale structure, but with some caveats.  
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Application: exact perturbations and growth of structures 

• Using LTB (e.g. Sussman,  PRD 79:025009,2009); Using Szekeres (Kasai, PRD 47, 
3214, 1993, Bolejko PRD 73:123508,2006; Meures & Bruni PRD 83:123519,2011; 
Peel, MI, Troxel PRD 86,123508,2012;  Sussman, Gaspar, PRD 92, 083533, 2015)   

 

• For example, in Szekeres    

 

 

 

 

 

 

 

 

 
 

• This is an exact expression. First 3 terms are similar to those of an FLRW model. δ 
is not restricted to be smaller than 1.   
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Application: Exact perturbations and growth of structures   

 
•   

 

 

 

 

 

 

 

 

 

 

• The growth is stronger in Szekeres 

• Can fit observations but with different 
cosmological parameters than LCDM 
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(Peel, MI, Troxel PRD 86,123508,2012) 



Application: The effect of inhomogeneities on cosmological  
parameter estimation using exact solutions  

• Cosmological constructions using exact 
matching of spacetimes where the observer is 
not at a privileged location 
 

• By the Darmois matching spacetime 
conditions, these are still  exact solutions to 
EFE 
 

• Studies  find residual  effects on redshift and 
distance observables  
(e.g. reviews by Ellis, CQG, 28, 164001 , 2011; 
Marra & Notari, CQG, 28, 164004, 2011) 
 

• A common finding is that observables are 
affected leading to small but non negligible 
effect on  cosmological parameters. 
 

• Are these effects at the level of systematic 
effects in cosmological  data?   
 

 
 
 
 
 

Fleury,  Dupuy, Uzan, PRD 87, 123526, 2013 

Marra, Kolb, Matarrese, PRD 77, 023003 , 2008 
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The averaging problem in relativity and cosmology 

• Following the tradition in books and talks on exact solutions in cosmology: a few 
remarks on the averaging problem.  
 

• The problem comes from the fact that spatial averaging and applying the Einstein’s 
field equations are two operations that do not commute due to the non-linear nature 
of General Relativity. e.g. (Ellis, 1983; Ellis, CQG, 28, 164001 Zalaletdinov, gr-
qc/0701116, 2007)  

 

 

• Applying this to the lumpy universe gives “macroscopic” Einstein equations and 
Friedmann equations with extra terms, often called backreaction terms    

 

•  Several formalisms developed : e.g. scalar averaging by Buchert, GRG 32, 105, 2000;  a 
covariant tensor approach (macroscopic gravity) by Zalaletdinov, GRG 24,  1015, 1992. 

 

• Coley, Pelavas, Zalaletdinov, PRL 95 (2005) 151102 obtained for a flat FLRW 
macroscopic metric  
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The averaging problem in relativity and cosmology 

• Macroscopic gravity compared to Cosmological distances and 
growth rate data: e.g. Clarkson et al. PRD 85, 043506, 2012; 
Wijenayake, MI, PRD 91, 063534, 2015 obtained:  

 

     where ΩA represents the backreaction parameter  

 

• Comparison to full CMB and other data sets is needed 
(Wijeneyake, MI, in preparation, 2016) 

 

• While the backreaction terms have been found small, their 
effect on cosmological parameter constraints in precision 
cosmology is still an open question. 
 (e.g. reviews: Rasanen, CQG, 28, 164008, 2011; Clarkson & 
Umeh, CQG, 28, 164010, 2011) 
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Concluding Remarks 

• A large number of exact solutions are available  
• Some still need physical analyses and interpretations 
• They can provide mathematical and physical insights 
• Some solutions have been influential in the development of 

relativity, cosmology and astrophysics 
• They can provide useful comparisons or validations of 

approximations and numerical work  
• They can constitute a starting point for simulations  
• Interactive online databases available now on the internet and 

may enhance their accessibility and analysis 
• Being exact, they are in general hard to adapt for more specific 

modeling purposes 
• They represent part of the legacy of the Einstein’s theory of 

Gravity.  
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