Measuring Cosmological Parameters with Gamma-Ray Bursts

Lorenzo Amati (INAF – IASF Bologna)

28th Texas Symposium on Relativistic Astrophysics

Why looking for more cosmological probes?

☐ different distribution in redshift -> different sensitivity to different

cosmological parameters

$$D_{L} = (1+z)c \div H_{o} |k|^{0.5} \times S \left\{ |k|^{0.5} \int_{0}^{z} \left[k(1+z)^{2} + \Omega_{M}(1+z')^{3} + \Omega_{\Lambda} \right]^{-0.5} dz' \right\}$$

☐ Each cosmological probe is characterized by possible systematics

☐ e.g SN la:

- → different explosion mechanism and progenitor systems? May depend on z?
- ➤ light curve shape correction for the luminosity normalisation may depend on z
- > signatures of evolution in the colours
- > correction for dust extinction
- anomalous luminosity-color relation
- > contaminations of the Hubble Diagram by no-standard SNe-la and/or bright SNe-lbc (e.g. HNe)

Control of systematics by combination of different probes is fundamental for investigation of DE properties / alternative cosmologies

The Gamma-Ray Bursts phenomenon

- □ sudden and unpredictable bursts of hard-X / soft gamma rays with huge flux
- most of the flux detected from 10-20 keV up to 1-2 MeV, with fluences typically of $\sim 10^{-7} 10^{-4}$ erg/cm² and bimodal distribution of duration
- measured rate (by an all-sky experiment on a LEO satellite): ~0.8 / day; estimated true rate ~2 / day

Early evidences for a cosmological origin of GRBs

- ☐ isotropic distribution of GRBs directions
- ☐ paucity of weak events with respect to homogeneous distribution in euclidean space
- ☐ given the high fluences (up to more than 10⁻⁴ erg/cm2 in 20-1000 keV) a cosmological origin would imply huge luminosity
- ☐ thus, a "local" origin was not excluded until 1997!

Establishing the cosmological distance scale of GRBs

■ 1997: accurate (a few arcmin) and quick localization of X-ray afterglow -> optical follow-up -> first optical counterparts and host galaxies

 Optical spectroscopy of afterglow and/or host galaxy -> first measurements of GRB redshift

GRB 990705

STIS/Clear HST

2.0"

λ (Å)

- optical spectroscopy of afterglow and/or host galaxy -> first measurements of GRB redshift
- ➤ redshifts higher than 0.01 and up to > 8
 GRB are cosmological
- ➤ their isotropic equivalent radiated energy is huge (up to more than 10⁵⁴ erg in a few tens of s!)

F, (10-29 erg cm-2 s-1 Hz-1)

F_v (10-29 erg cm⁻² s⁻¹ Hz⁻¹)

7,000

λ (Å)

➤ redshifts higher than 0.01 and up to > 8:
GRB are cosmological!

➤ their isotropic equivalent radiated energy is huge (up to more than 10⁵⁴ erg in a few tens of s!)

> fundamental input for origin of long / short

- ➤ redshifts higher than 0.01 and up to > 8:
 GRB are cosmological!
- ➤ their isotropic equivalent radiated energy is huge (up to more than 10⁵⁴ erg in a few tens of s."

1.0

8.0

0.6

pre-Swift bursts

Median: z = 1.02Mean: z = 1.35

Are Gamma-Ray Bursts standard candles?

- □ all GRBs with measured redshift (~320, including a few short GRBs) lie at cosmological distances (**z** = **0.033 ~9.3**) (except for the peculiar GRB980425, z=0.0085)
- isotropic luminosities and radiated energy are huge, can be detected up to very high z
- no dust extinction problems; z distribution much beyond SN la but...
 GRBs are not standard candles (unfortunately)

- jet angles, derived from break time of optical afterglow light curve by assuming standard afterglow model, are of the order of few degrees
- \Box the collimation-corrected radiated energy spans the range ~5x10⁴⁹ 5x10⁵² erg

-> more clustered but still not standard (and jet angle estimates very unfirm)

The Ep,i – "intensity" correlation

- \triangleright GRB ν F ν spectra typically show a peak at a characteristic photon energy E_p
- measured spectrum + measured redshift -> intrinsic peak enery and radiated energy

$$E_{p,i} = E_{p} \times (1 + z)$$

$$E_{\gamma,iso} = \frac{4\pi D_{l}^{2}}{(1+z)} \int_{1/1+z}^{10^{4}/1+z} E N(E) dE \text{ erg}$$

Amati et al. (A&A 2002): significant correlation between Ep,i and Eiso found based on a small sample of BeppoSAX GRBs with known redshift

➤ Ep,i – Eiso correlation for GRBs with known redshift confirmed and extended by measurements of ALL other GRB detectors with spectral capabilities

162 long GRBs as of June 2013

Amati, Frontera & Guidorzi (2009), Amati & Della Valle (2013): the normalization of the correlation varies only marginally **using GRBs with known redshift** measured by individual instruments with different sensitivities and energy bands

Amati & Della Valle 2013

"Standardizing" GRB with the Ep,i - Intensity correlation

$$\begin{split} E_{p,i} &= E_{p,obs} \, x \, (1+z) \\ E_{\gamma,iso} &= \frac{4\pi \mathcal{D}_l^2}{(1+z)} \int_{1/1+z}^{10^4/1+z} E \, N(E) \, dE \quad \text{erg} \end{split}$$

- not enough low-z GRBs for cosmology-independent calibration -> circularity is avoided by fitting simultaneously the parameters of the correlation and cosmological parameters
- □ does the extrinsic scatter and goodness of fit of the Ep,i-Eiso correlation vary with the cosmological parameters used to compute Eiso?

- □ a fraction of the extrinsic scatter of the E_{p,i}-E_{iso} correlation is indeed due to the cosmological parameters used to compute E_{iso}
- \square Evidence, independent on SN Ia or other cosmological probes, that, if we are in a flat Λ CDM universe, $\Omega_{\rm M}$ is lower than 1 and around 0.3

Amati et al. 2008, Amati & Della Valle 2013

- > strong correlation but significant dispersion of the data around the best-fit power-law; distribution of residuals can be fit with a Gaussian with $\sigma(\log Ep,i) \sim 0.2$
- ➤ the "extra-statistical scatter" of the data can be quantified by performing a fit whith a max likelihood method (D'Agostini 2005) which accounts for sample variance and the uncertainties on both X and Y quantities

$$L(m, c, \sigma_v; \boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2} \sum_{i} \log (\sigma_v^2) + \sigma_{y_i}^2 + m^2 \sigma_{x_i}^2 + \frac{1}{2} \sum_{i} \frac{(y_i - m x_i - c)^2}{\sigma_v^2 + \sigma_{y_i}^2 + m^2 \sigma_{x_i}^2}$$

ightharpoonup with this method Amati et al. (2008, 2009) found an extrinsic scatter $\sigma_{int}(logEp,i) \sim 0.2$ and index and normalization t ~ 0.5 and ~ 100 , respectively

➤ By using a maximum likelihood method the extrinsic scatter can be parametrized and quantified (e.g., Reichart 2001)

$$L(m, c, \sigma_v; \boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2} \sum_{i} \log (\sigma_v^2 + \sigma_{y_i}^2 + m^2 \sigma_{x_i}^2) + \frac{1}{2} \sum_{i} \frac{(y_i - m x_i - c)^2}{(\sigma_v^2 + \sigma_{y_i}^2 + m^2 \sigma_{x_i}^2)}$$

 $\Omega_{\rm M}$ could be constrained (Amati+08, 70 GRBs) to 0.04-0.43 (68%) and 0.02-0.71 (90%) for a flat Λ CDM universe ($\Omega_{\rm M}$ = 1 excluded at 99.9% c.l.)

Amati et al. 2008, 2013

- ➤ analysis of updated sample of 137 GRBs (Amati+12) shows significant improvements w/r to the sample of 70 GRBs of Amati et al. (2008)
- ➤ this evidence supports the reliability and perspectives of the use of the Ep,i Eiso correlation for the estimate of cosmological parameters

Ωm (flat universe)	best	68%	90%
70 GRBs (Amati+ 08)	0.27	0.09 - 0.65	0.05 - 0.89
137 GRBs (Amati+ 12)	0.29	0.12 - 0.54	0.08 - 0.79

➤ The GRB Hubble diagram extends to much higher z w/r to SNe Ia

➤ The GRB Hubble diagram is consistent with SNe Ia Hubble diagram at low redshifts: reliability

Perspectives

☐ Enlargement of the sample (+ self-calibration)

- ➤ the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an increasing accuracy in the estimate of cosmological parameters
- future GRB experiments (e.g., SVOM) and more investigations (in particular: reliable estimates of jet angles and self-calibration) will improve the significance and reliability of the results and allow to go beyond SN Ia cosmology (e.g. investigation of dark energy)

GRB #	$\Omega_{ ext{M}}$	w_0
	(flat)	$(\text{flat}, \Omega_{\text{M}} = 0.3, w_{\text{a}} = 0.5)$
70 (real) GRBs (Amati+ 08)	$0.27^{+0.38}_{-0.18}$	<-0.3 (90%)
156 (real) GRBs (Amati+ 13)	$0.29^{+0.28}_{-0.15}$	$-0.9^{+0.4}_{-1.5}$
250 (156 real + 94 simulated) GRBs	$0.29^{+0.16}_{-0.12}$	$-0.9^{+0.3}_{-1.1}$
500 (156 real + 344 simulated) GRBs	$0.29^{+0.10}_{-0.09}$	$-0.9^{+0.2}_{-0.8}$
156 (real) GRBs, calibration	$0.30^{+0.06}_{-0.06}$	$-1.1^{+0.25}_{-0.30}$
250 (156 real + 94 simulated) GRBs, calibration	$0.30^{+0.04}_{-0.05}$	$-1.1^{+0.20}_{-0.20}$
500 (156 real + 344 simulated) GRBs, calibration	$0.30^{+0.03}_{-0.03}$	$-1.1^{+0.12}_{-0.15}$

$$w(z) = w_0 + \frac{w_a z}{1+z}$$

☐ Enlargement of the sample (+ self-calibration + reliable jet angles)

➤ the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an increasing accuracy in the estimate of cosmological parameters

Future GRB experiments (cosmology Project and more investigations (in particular:

reliable estima and reliability of investigation c

rove the significance osmology (e.g.

$$w(z) = w_0 + \frac{w_a z}{1 + z}$$

Amati et al. 2015

☐ Calibrating the Ep,i – Eiso correlation with SN Ia

- ➤ Several authors (e.g., Kodama et al., 2008; Liang et al., 2008, Li et al. 2008, Demianski et al. 2010-2011, Capozziello et al. 2010, Wang et al. 2012) are investigating the calibration of the Ep,i Eiso correlation at z < 1.7 by using the luminosity distance redshift relation derived for SN Ia
- The aim is to extend the SN Ia Hubble diagram up to redshifts at which the luminosity distance is more sensitive to dark energy properties and evolution

> Drawback: with this method GRB are no more an indipendent cosmological probe

Amati & Della Valle 13, Amati+ 13

☐ Calibrating the Ep,i – Eiso correlation with SN Ia

- ➤ Several authors (e.g., Kodama et al., 2008; Liang et al., 2008, Li et al. 2008, Demianski et al. 2010-2011, Capozziello et al. 2010, Wang et al. 2012) are investigating the calibration of the Ep,i Eiso correlation at z < 1.7 by using the luminosity distance redshift relation derived for SN Ia
- The aim is to extend the SN Ia Hubble diagram up to redshifts at which the luminosity distance is more sensitive to dark energy properties and evolution
- > Drawback: with this method GRB are no more an indipendent cosmological probe

Conclusions

- ➤ Given their huge radiated energies and redshift distribution extending from ~ 0.1 up to > 9, GRBs, besides being the most relativistic sources in the Universe, are potentially a very powerful cosmological probe, complementary to other probes (e.g., SN Ia, clusters, BAO)
- The Ep,i intensity correlation is a promising tool for "standardizing" GRBs for measuring cosmological parameters: recent analyses provide already evidence, independent on , e.g., SN Ia, that if we live in a flat ΛCDM universe, Ωm is ~ 0.3, consistent with "standard" cosmology)
- Future GRB experiments and investigations will allow to get clues on "dark energy" EOS (cosmological constant vs "quintessence", etc.) and its evolution, and testing alternative, e.g., f(R), cosmologies.