Measuring Cosmological
Parameters with
Gamma-Ray Bursts

TROFIS
\ PS 'cq

chA
?.:_:;1 Y, o

0y 1 = v\’(o
& .“ %  Lorenzo Amati
< g .

% ° & (INAF - IASF Bologna) *

b o

A o
YOz T Nar 1as 80"

28th Texas Symposium on Relativistic
Astrophysics

Sunday 13 December 2015 - Friday 18 December 2015



Why looking for more cosmological probes ?

1 different distribution in redshift -> different sensitivity to different

cosmological parameters O=0+0 +@
/ )
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1 Each cosmological probe is
characterized by possible systematics

(1 e.g SN la:

> different explosion mechanism and
progenitor systems ? May depend on z ?

» light curve shape correction for the
luminosity normalisation may depend on z

» signatures of evolution in the colours
» correction for dust extinction
» anomalous luminosity-color relation

» contaminations of the Hubble Diagram by
no-standard SNe-la and/or bright SNe-Ibc
(e.g. HNe)

Mg =5 log(h/65)

5 log(//65)

Mg

200 — :
light-curve timescale
e S stretch-factor corrected
18- “( E
ME L ,, . E
e 4 Y
: st
16 2 :
a5 , | | :
20 0 20 40 60

Kim, et al. (1997)



Control of systematics by combination of different probes is
fundamental for investigation of DE properties / alternative cosmologies
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The Gamma-Ray Bursts phenomenon

 sudden and unpredictable bursts of hard-X / soft
gamma rays with huge flux

1 most of the flux detected from 10-20 keV up to 1-2
MeV, with fluences typically of ~10-" — 10 erg/cm?
and bimodal distribution of duration
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Early evidences for a cosmological origin of GRBs

[ isotropic distribution of GRBs directions

1 paucity of weak events with respect to homogeneous distribution in
euclidean space

[ given the high fluences (up to more than 10 erg/lcm2 in 20-1000 keV)
a cosmological origin would imply huge luminosity

 thus, a “local” origin was not excluded until 1997 !
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Establishing the cosmological distance scale of GRBs

(1 1997: accurate (a few arcmin) and quick localization of X-ray afterglow ->
optical follow-up -> first optical counterparts and host galaxies

1 Optical spectroscopy

of afterglow and/or
host galaxy —> first
measurements of
GRB redshift
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» optical spectroscopy of afterglow and/or host
galaxy —> first measurements of GRB redshift

» redshifts higher than 0.01 and up to > 8

GRB are cosmological

> their isotropic equivalent radiated energy
is huge (up to more than 10°¢ erg in a few

tens of s !
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> redshifts higher than 0.01 andupto>8: |
GRB are cosmological ! '

> their isotropic equivalent radiated energy = |
is huge (up to more than 10° erg in a few '

tens of s !)

> fundamental input for origin 1@» I
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» redshifts higher than 0.01 and up to > 8:
GRB are cosmological !

> their isotropic equivalent radiated energy
is huge (up to more than 10° erg in a few

tens of ¢ °
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Are Gamma-Ray Bursts standard candles ?

[ all GRBs with measured redshift (~320, including a few short GRBs) lie at
cosmological distances (z =0.033 — ~9.3) (except for the peculiar
GRB980425, z=0.0085)

U isotropic luminosities and radiated energy are huge, can be detected up
to very high z

 no dust extinction problems; z distribution much beyond SN la but...
GRBs are not standard candles (unfortunately)
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(1 jet angles, derived from break time of optical afterglow light curve by assuming
standard afterglow model, are of the order of few degrees

A the collimation-corrected radiated energy spans the range ~5x104° — 5x10° erg
-> more clustered but still not standard (and jet angle estimates very unfirm)
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The Ep,i - “intensity” correlation

» GRB vFv spectra typically show a peak at a characteristic photon energy E,

» measured spectrum + measured redshift -> intrinsic peak enery and
radiated energy

(1 + z)
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» Amati et al. (A&A 2002): significant correlation between Ep,i and Eiso
found based on a small sample of BeppoSAX GRBs with known redshift
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> Ep,i — Eiso correlation for GRBs with known redshift confirmed and
extended by measurements of ALL other GRB detectors with spectral
capabilities

162 long GRBs as of June 2013
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( Amati, Frontera & Guidorzi (2009), Amati & Della Valle (2013): the normalization
of the correlation varies only marginally using GRBs with known redshift
measured by individual instruments with different sensitivities and energy bands
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“‘Standardizing” GRB with the Ep,i - Intensity correlation

E,-=Epobsx(1+z)
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 not enough low-z GRBs for cosmology-independent calibration -> circularity
is avoided by fitting simultaneously the parameters of the correlation and

cosmological parameters

1 does the extrinsic scatter and goodness of fit of the Ep,i-Eiso correlation vary
W|th the cosmologlcal parameters used to compute Eiso ?
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L afraction of the extrinsic scatter of the E ;-E;, correlation is indeed

due to the cosmological parameters used to compute E;_,

O Evidence, independent on SN la or other cosmological probes, that, if
we are in a flat ACDM universe , Q,, is lower than 1 and around 0.3
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» strong correlation but significant dispersion of the data around the best-fit
power-law; distribution of residuals can be fit with a Gaussian with o(logEp,i) ~ 0.2

» the “extra-statistical scatter” of the data can be quantified by performing a fit whith
a max likelihood method (D’Agostini 2005) which accounts for sample variance and
the uncertainties on both X and Y auantities
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» with this method Amati et al. (2008, 2009) found an extrinsic scatter
o;,(logEp,i) ~ 0.2 and index and normalization t ~0.5 and ~100, respectively
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» By using a maximum likelihood method the extrinsic scatter can be
parametrized and quantified (e.g., Reichart 2001)
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» analysis of updated sample of 137 GRBs (Amati+12) shows significant

improvements w/r to the sample of 70 GRBs of Amati et al. (2008)

» this evidence supports the reliability and perspectives of the use of the
Ep,i — Eiso correlation for the estimate of cosmological parameters

Qm (flat universe) best 68% 90%
70 GRBs (Amati+ 08) 0.27 0.09 - 0.65 0.05-0.89
137 GRBs (Amati+ 12) 0.29 0.12 - 0.54 0.08-0.79




Supernova Cosmology Project
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» The GRB Hubble diagram
extends to much higher z wir to
SNe la

» The GRB Hubble diagram is z
consistent with SNe la Hubble ol
diagram at low redshifts: o
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Perspectives

All observational cosmology tests agree: ~96% of the Universe is dark
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1 Enlargement of the sample (+ self-calibration)

» the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an
increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an
increasing accuracy in the estimate of cosmological parameters

» future GRB experiments (e.g., SVOM) and more investigations (in particular:
reliable estimates of jet angles and self-calibration) will improve the significance
and reliability of the results and allow to go beyond SN la cosmology (e.g.

investigation of dark energy)

GRB # o o
(flat) (flat,Qn=0.3,w,=0.5)

70 (real) GRBs (Amati+ 08) 0.277 s <—0.3 (90%)
156 (real) GRBs (Amati+ 13) [}_ngg-gg —U-Qf'i'jé
250 (156 real + 94 simulated) GRBs 0.2070:15 —0.9+9-3
500 (156 real + 344 simulated) GRBs 0.2075 509 —0.910:2
156 (real) GRBs, calibration 0.307 5 oa —1.1753
250 (156 real + 94 simulated) GRBs, calibration ~ 0.307( 02 ~1.17530
500 (156 real + 344 simulated) GRBs, calibration  0.307(03 —1.17512
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1 Enlargement of the sample (+ self-calibration + reliable jet angles)

» the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an
increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an
increasing accuracy in the estimate of cosmological parameters
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1 Calibrating the Ep,i — Eiso correlation with SN la

» Several authors (e.g., Kodama et al., 2008; Liang et al., 2008, Li et al. 2008,
Demianski et al. 2010-2011, Capozziello et al. 2010, Wang et al. 2012) are
investigating the calibration of the Ep,i - Eiso correlation at z < 1.7 by using the
luminosity distance — redshift relation derived for SN la

» The aim is to extend the SN la Hubble diagram up to redshifts at which the
luminosity distance is more sensitive to dark energy properties and evolution

» Drawback: with this method GRB are no more an indipendent cosmological probe
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1 Calibrating the Ep,i — Eiso correlation with SN la

» Several authors (e.g., Kodama et al., 2008; Liang et al., 2008, Li et al. 2008,
Demianski et al. 2010-2011, Capozziello et al. 2010, Wang et al. 2012) are
investigating the calibration of the Ep,i - Eiso correlation at z < 1.7 by using the
luminosity distance — redshift relation derived for SN la

» The aim is to extend the SN la Hubble diagram up to redshifts at which the
luminosity distance is more sensitive to dark energy properties and evolution

» Drawback: with this method GRB are no more an indipendent cosmological probe
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Conclusions

» Given their huge radiated energies and redshift distribution extending
from ~0.1Tupto>9, GRBs, besides being the most relativistic
sources in the Universe, are potentially a very powerful cosmological
probe, complementary to other probes (e.g., SN la, clusters, BAO)

» The Ep,i — intensity correlation is a promising tool for “standardizing”
GRBs for measuring cosmological parameters: recent analyses provide
already evidence, independent on , e.g., SN la, that if we live in a flat
ACDM universe, Qm is ~ 0.3, consistent with “standard” cosmology)

» Future GRB experiments and investigations will allow to get clues
on “dark energy” EOS (cosmological constant vs “quintessence”,
etc.) and its evolution, and testing alternative, e.g., f(R),
cosmologies.



